Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Phương trình \({2^{{x^2} + 2x + 4}} = 3m - 7\) có nghiệm khi

Câu hỏi số 378592:
Thông hiểu

Phương trình \({2^{{x^2} + 2x + 4}} = 3m - 7\) có nghiệm khi

Đáp án đúng là: D

Quảng cáo

Câu hỏi:378592
Phương pháp giải

Sử dụng lý thuyết:

Phương trình bậc hai \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có nghiệm khi \(\Delta  \ge 0\).

Giải chi tiết

Ta có: \({2^{{x^2} + 2x + 4}} = 3m - 7\)

Dễ thấy \({2^{{x^2} + 2x + 4}} > 0\) nên \(3m - 7 > 0 \Leftrightarrow m > \dfrac{7}{3}\).

PT\( \Leftrightarrow {x^2} + 2x + 4 = {\log _2}\left( {3m - 7} \right)\) \( \Leftrightarrow {\left( {x + 1} \right)^2} + 3 = {\log _2}3m - 7\)

\( \Leftrightarrow {\left( {x + 1} \right)^2} = {\log _2}\left( {3m - 7} \right) - 3\)

Do \({\left( {x + 1} \right)^2} \ge 0\) nên phương trình đã cho có nghiệm \( \Leftrightarrow {\log _2}\left( {3m - 7} \right) - 3 \ge 0\)

\( \Leftrightarrow {\log _2}\left( {3m - 7} \right) \ge 3 \Leftrightarrow 3m - 7 \ge {2^3}\) \( \Leftrightarrow 3m \ge 15 \Leftrightarrow m \ge 5\)

Kết hợp với \(m > \dfrac{7}{3}\) ta được \(m \ge 5\).

Vậy \(m \in \left[ {5; + \infty } \right)\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com