Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho đường tròn \(\left( O \right)\) và một điểm \(M\) nằm ngoài đường tròn. Từ \(M\) kẻ hai

Câu hỏi số 380734:
Vận dụng

Cho đường tròn \(\left( O \right)\) và một điểm \(M\) nằm ngoài đường tròn. Từ \(M\) kẻ hai tiếp tuyến \(MA,MB\) với đường tròn \(\left( O \right)\) (\(A\) và \(B\)là hai tiếp điểm). Gọi \(I\) là giao điểm của \(OM\) và \(AB\). Kẻ đường kính \(BC\) của \(\left( O \right)\).

a) Chứng minh \(4\) điểm \(M,O,A,B\) cùng thuộc một đường tròn.

b) Chứng minh \(OI.OM = O{A^2}\).

c) Qua \(\left( O \right)\) vẽ đường thẳng vuông góc với \(MC\) tại \(E\) và cắt đường thẳng \(BA\) tại \(F\). Chứng minh \(FC\) là tiếp tuyến của đường tròn \(\left( O \right)\).

Quảng cáo

Câu hỏi:380734
Phương pháp giải

a) Gọi \(K\) là trung điểm \(OM\), chứng minh \(KO = KM = KA = KB\) dựa vào tính chất tam giác vuông.

b) Sử dụng hệ thức giữa cạnh và đường cao trong tam giác vuông \(OAM\).

c) Chứng minh \(\Delta OCE \sim \Delta OFC\left( {c.g.c} \right)\) suy ra \(\widehat {OCF} = \widehat {OEC} = 90^\circ \).

Giải chi tiết


a) Chứng minh \(4\) điểm \(M,O,A,B\) cùng thuộc một đường tròn.

Gọi \(K\) là trung điểm của \(OM\)\( \Rightarrow OK = KM\).

Tam giác \(OAM\) vuông tại \(A\) nên \(AK = KM = KO = \frac{1}{2}OM\)(tính chất trung tuyến tam giác vuông).

Tam giác \(OBM\) vuông tại \(B\) nên \(BK = KM = KO = \frac{1}{2}OM\)(tính chất trung tuyến tam giác vuông).

Do đó \(OK = KM = KA = KB\).

Suy ra \(4\) điểm \(O,A,M,B\) nằm trên đường tròn tâm \(K\), đường kính \(OM\).

b) Chứng minh \(OI.OM = O{A^2}\).

Ta có : \(OA = OB\) (bán kính)

\(MA = MB\) (tính chất hai tiếp tuyến cắt nhau)

\( \Rightarrow OM\) là trung trực của \(AB\)\( \Rightarrow OM \bot AB\) tại \(I\).

\(\Delta OAM\) vuông tại \(A\) đường cao \(AI\) \( \Rightarrow OI.OM = O{A^2}\) (hệ thức giữa cạnh và đường cao).

c) Qua \(\left( O \right)\) vẽ đường thẳng vuông góc với \(MC\) tại \(E\) và cắt đường thẳng \(BA\) tại \(F\).

Xét \(\Delta OFI\) và \(\Delta OME\) có :

\(\begin{array}{l}\angle O\,\,\,chung\\\angle OIF = \angle OEM = {90^0}\end{array}\) 

\( \Rightarrow \Delta OFI \sim \Delta OME\,\,\,\left( {g - g} \right) \Rightarrow \frac{{OF}}{{OM}} = \frac{{OI}}{{OE}}\) (các cặp cạnh tương ứng tỉ lệ)

\(\begin{array}{l} \Rightarrow OF.OE = OI.OM = O{A^2} = O{C^2}\\ \Rightarrow \frac{{OF}}{{OC}} = \frac{{OC}}{{OE}}.\end{array}\)

Xét \(\Delta OCE\) và \(\Delta OFC\) có :

\(\begin{array}{l}\angle O\,\,\,chung\\\frac{{OF}}{{OC}} = \frac{{OC}}{{OE}}\,\,\left( {cmt} \right)\\ \Rightarrow \Delta OCE \sim \Delta OFC\,\,\,\left( {c - g - c} \right)\end{array}\)

Nên \(\angle OCF = \angle OEC = {90^0}\) (góc tương ứng)

\( \Rightarrow FC\) là tiếp tuyến của \(\left( O \right)\) (đpcm).

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com