Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho điểm \(A\) nằm ngoài đường tròn \(\left( O \right),\) kẻ các tiếp tuyến \(AB,\,AC\) với

Câu hỏi số 380937:
Vận dụng

Cho điểm \(A\) nằm ngoài đường tròn \(\left( O \right),\) kẻ các tiếp tuyến \(AB,\,AC\) với đường tròn \(\left( O \right)\) (\(B\) và \(C\) là 2 tiếp điểm)

a) Chứng minh : Bốn điểm \(A,\,B,\,O,\,C\) cùng thuộc \(1\) đường tròn và \(AO \bot BC.\)

b) Trên cung nhỏ \(BC\) của \(\left( O \right)\) lấy điểm \(M\) bất kì (\(M \ne B,\,M \ne C,\,M \notin AO\)). Tiếp tuyến tại \(M\) cắt \(AB,\,AC\) lần lượt tại \(D,\,E.\) Chứng minh : Chu vi \(\Delta ADE\) bằng \(2AB.\)

c) Đường thẳng vuông góc với \(AO\) tại \(O\) cắt \(AB\) và \(AC\) lần lượt tại \(P\) và \(Q.\) Chứng minh : \(4PD.QE = P{Q^2}.\)

Quảng cáo

Câu hỏi:380937
Phương pháp giải

a) +) Gọi \(N\) là trung điểm \(AO\) và chứng minh \(NO = NA = NB = NC\)

+) Chứng minh \(AO\) là trung trực của đoạn \(BC.\)

b) Sử dụng tính chất tiếp tuyến cắt nhau.

c) Chứng minh các tam giác \(\Delta ODE \sim \Delta QOE\) và \( \Rightarrow \Delta ODE \sim \Delta PDO\) suy ra các tỉ số đồng dạng.

Giải chi tiết

Cho điểm \(A\) nằm ngoài đường tròn \(\left( O \right),\) kẻ các tiếp tuyến \(AB,\,AC\) với đường tròn \(\left( O \right)\) (\(B\)\(C\) là 2 tiếp điểm)

a) Chứng minh : Bốn điểm \(A,\,B,\,O,\,C\) cùng thuộc \(1\) đường tròn và \(AO \bot BC.\)

Gọi \(N\) là trung điểm của \(AO\).

Tam giác \(AOB\) vuông tại \(B\) nên \(BN = \frac{1}{2}AO = NA = NO\) (1)

Tương tự ta có \(CN = \frac{1}{2}AO = NA = NO\) (2)

Từ (1) và (2) suy ra \(NB = NA = NO = NC\).

Vậy \(A,B,O,C\) cùng thuộc đường tròn tâm \(N,\) đường kính \(AO\).

Vì \(AB,AC\) là các tiếp tuyến nên \(AB = AC\left( {t/c} \right)\).

Mà \(OA = OB\) (bán kính) nên \(AO\) là trung trực của đoạn \(BC.\)

Suy ra \(AO\) vuông góc \(BC\)

b) Trên cung nhỏ \(BC\) của \(\left( O \right)\) lấy điểm \(M\) bất kì (\(M \ne B,\,M \ne C,\,M \notin AO\)). Tiếp tuyến tại \(M\) cắt \(AB,\,AC\) lần lượt tại \(D,\,E.\) Chứng minh : Chu vi \(\Delta ADE\) bằng \(2AB.\)

Chu vi \(\Delta ADE = AD + DE + AE\)

Mà : \(DM = DB\) (tiếp tuyến \(MD\) và \(DB\) cắt nhau tại \(D\))

\(ME = CE\) (tiếp tuyến \(ME\) và \(CE\) cắt nhau tại \(E\))

Suy ra chu vi \(\Delta ADE\) là:

\(AD + DB + AE + EC\) \( = AB + AC = 2AB\)

c) Đường thẳng vuông góc với \(AO\) tại \(O\) cắt \(AB\)\(AC\) lần lượt tại \(P\)\(Q.\) Chứng minh : \(4PD.QE = P{Q^2}.\)

Theo tính chất của hai tiếp tuyến của đường tròn, ta có :

\(\widehat {DOM} = \frac{1}{2}\widehat {BOM},\,\widehat {MOE} = \frac{1}{2}\widehat {MOC}\)

Cộng vế theo vế, ta được :

\(\widehat {DOE} = \frac{1}{2}\widehat {BOC}\)

Mà \(\frac{1}{2}\widehat {BOC} = \widehat {AOC} = \widehat {OQE}\) (vì \(\widehat {AOC}\) và \(\widehat {OQE}\) cùng phụ với \(\widehat {QAO}\))

Nên \(\widehat {DOE} = \widehat {OQE}\)

Xét tam giác \(ODE\) và tam giác \(QOE,\) ta có :

\(\widehat {DOE} = \widehat {QOE}\,\,\left( {cmt} \right)\)

\(\widehat {OED} = \widehat {OEQ}\) (tính chất hai tiếp tuyến cắt nhau)

\( \Rightarrow \Delta ODE \sim \Delta QOE\left( {g.g} \right)\)

Chứng minh tương tự \( \Rightarrow \Delta ODE \sim \Delta PDO\)

\( \Rightarrow \Delta QOE \sim \Delta PDO\) (tính chất bắc cầu)

\( \Rightarrow \frac{{QO}}{{PD}} = \frac{{QE}}{{PO}}\) \( \Rightarrow PD.QE = PO.QO\) \( = \frac{{PQ}}{2} \cdot \frac{{PQ}}{2} = \frac{{P{Q^2}}}{4}\)

\( \Rightarrow 4PD.QE = P{Q^2}\). (đpcm)

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com