Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\), có đáy \(ABCD\) là hình vuông cạnh \(a\), cạnh bên \(SA\) vuông góc với

Câu hỏi số 383520:
Vận dụng cao

Cho hình chóp \(S.ABCD\), có đáy \(ABCD\) là hình vuông cạnh \(a\), cạnh bên \(SA\) vuông góc với đáy \(ABCD\). Gọi \(M\) là trung điểm \(SD\), góc giữa \(\left( {SBC} \right),\,\,\left( {AMC} \right)\) thỏa mãn \(\tan \varphi  = \dfrac{{2\sqrt 5 }}{5}\). Thể tích khối đa diện \(SABCM\) bằng:

Đáp án đúng là: C

Câu hỏi:383520
Phương pháp giải

Sử dụng phương pháp tọa độ trong không gian.

Giải chi tiết

Đặt \(A\left( {0;0;0} \right)\), \(S\left( {0;0;x} \right)\), \(D\left( {0;1;0} \right)\), \(B\left( {1;0;0} \right)\), \(C\left( {1;1;0} \right)\)\( \Rightarrow M\left( {0;\dfrac{1}{2};\dfrac{x}{2}} \right)\).

\( \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AM} \left( {0;\dfrac{1}{2};\dfrac{x}{2}} \right)\\\overrightarrow {AC} \left( {1;1;0} \right)\end{array} \right.\)\( \Rightarrow {\overrightarrow n _{\left( {AMC} \right)}} = \left[ {\overrightarrow {AM} ;\overrightarrow {AC} } \right] = \left( { - \dfrac{x}{2};\dfrac{x}{2}; - \dfrac{1}{2}} \right)\)

    \(\left\{ \begin{array}{l}\overrightarrow {SB} \left( {1;0; - x} \right)\\\overrightarrow {BC} \left( {0;1;0} \right)\end{array} \right.\)\( \Rightarrow {\overrightarrow n _{\left( {SBC} \right)}} = \left[ {\overrightarrow {SB} ;\overrightarrow {BC} } \right] = \left( {x;0;1} \right)\) .

Ta có: \(\tan \varphi  = \dfrac{{2\sqrt 5 }}{5}\)\( \Rightarrow \cos \varphi  = \dfrac{1}{{\sqrt {1 + {{\tan }^2}\varphi } }} = \dfrac{{\sqrt 5 }}{3}\)  

\(\begin{array}{l} \Rightarrow \cos \left( \varphi  \right) = \dfrac{{\left| {{{\overrightarrow n }_{\left( {AMC} \right)}}.{{\overrightarrow n }_{\left( {SBC} \right)}}} \right|}}{{\left| {{{\overrightarrow n }_{\left( {AMC} \right)}}} \right|.\left| {{{\overrightarrow n }_{\left( {SBC} \right)}}} \right|}} = \dfrac{{\sqrt 5 }}{3}\\ \Rightarrow \dfrac{{\left| {\dfrac{{ - {x^2}}}{2} - \dfrac{1}{2}} \right|}}{{\sqrt {\dfrac{{{x^2}}}{2} + \dfrac{1}{4}} .\sqrt {{x^2} + 1} }} = \dfrac{{\sqrt 5 }}{3}\\ \Leftrightarrow \dfrac{{\dfrac{{{x^2} + 1}}{2}}}{{\dfrac{{\sqrt {2{x^2} + 1} .\sqrt {{x^2} + 1} }}{2}}} = \dfrac{{\sqrt 5 }}{3}\\ \Leftrightarrow \dfrac{{\sqrt {{x^2} + 1} }}{{\sqrt {2{x^2} + 1} }} = \dfrac{{\sqrt 5 }}{3} \Leftrightarrow 9\left( {{x^2} + 1} \right) = 5\left( {2{x^2} + 1} \right)\\ \Leftrightarrow {x^2} = 4 \Leftrightarrow x = 2 \Rightarrow SA = 2a\end{array}\)

Ta có: \({V_{SABCM}} = {V_{SABCD}} - {V_{SMACD}}\).

\(\dfrac{{{V_{MACD}}}}{{{V_{S.ABCD}}}} = \dfrac{{d\left( {M;\left( {ABCD} \right)} \right)}}{{d\left( {S;\left( {ABCD} \right)} \right)}}.\dfrac{{{S_{ACD}}}}{{{S_{ABCD}}}} = \dfrac{1}{4}\).

\( \Rightarrow {V_{SABCM}} = \dfrac{3}{4}{V_{S.ABCD}}\) \( = \dfrac{3}{4}.\dfrac{1}{3}.2a.{a^2} = \dfrac{{{a^3}}}{2}\).

Tham Gia Group Dành Cho 2K7 luyện thi Tn THPT - ĐGNL - ĐGTD

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com