Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(N\) là trung điểm của \(SB\), \(Q\)
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(N\) là trung điểm của \(SB\), \(Q\) là điểm thuộc cạnh \(SD\) sao cho \(DQ = 3SQ\). Mặt phẳng \(\left( \alpha \right)\) đi qua \(NQ\) và cắt các cạnh \(SA,\,\,SC\) lần lượt tại \(M,\,\,P\). Giá trị nhỏ nhất của tỉ số \(\frac{{{V_{S.MNPQ}}}}{{{V_{S.ABCD}}}}\) bằng:
Đáp án đúng là: D
Quảng cáo
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












