Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông. Mặt bên \(SAB\) là tam giác đều cạnh \(a\)
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông. Mặt bên \(SAB\) là tam giác đều cạnh \(a\) và nằm trong mặt phẳng vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Tính thể tích khối chóp \(S.ABCD\).

Đáp án đúng là: B
Quảng cáo
- Sử dụng tính chất: Cho hai mặt phẳng vuông góc, đường thẳng nằm trong mặt này và vuông góc với giao tuyến thì vuông góc với mặt phẳng kia để xác định đường cao của chóp.
- Sử dụng công thức tính nhanh đường cao trong tam giác đều cạnh \(a\) là \(\dfrac{{a\sqrt 3 }}{2}\).
- Sử dụng công thức tính thể tích khối chóp \(V = \dfrac{1}{3}{S_{day}}.h\) trong đó \({S_{day}}\) là diện tích đáy và \(h\) là chiều cao của khối chóp.
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













