Số nghiệm thực của phương trình \({\log _3}x + {\log _3}\left( {x - 6} \right) = {\log _3}7\) là
Số nghiệm thực của phương trình \({\log _3}x + {\log _3}\left( {x - 6} \right) = {\log _3}7\) là
Đáp án đúng là: D
Quảng cáo
- Tìm điều kiện xác định của phương trình.
- Sử dụng công thức \({\log _a}x + {\log _a}y = {\log _a}\left( {xy} \right)\,\,\left( {0 < a \ne 1;\,\,x,y > 0} \right)\).
- Giải phương trình lôgarit: \({\log _a}f\left( x \right) = {\log _a}b \Leftrightarrow f\left( x \right) = b\).
Khi giải phương trình cần chú ý đến ĐKXĐ của phương trình.
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












