Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi cạnh \(a\). Tam giác \(ABC\) đều, hình chiếu

Câu hỏi số 393737:
Vận dụng

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi cạnh \(a\). Tam giác \(ABC\) đều, hình chiếu vuông góc \(H\) của đỉnh \(S\) trên mặt phẳng \(\left( {ABCD} \right)\) trùng với trọng tâm của tam giác \(ABC\). Đường thẳng \(SD\) hợp với mặt phẳng \(\left( {ABCD} \right)\) góc \(30^\circ \). Tính khoảng cách \(d\) từ \(B\) đến mặt phẳng \(\left( {SCD} \right)\) theo \(a\).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:393737
Phương pháp giải

- Xác định góc giữa cạnh bên \(SD\) và mặt đáy \(\left( {ABCD} \right)\) là góc giữa \(SD\) và hình chiếu của \(SD\) lên \(\left( {ABCD} \right)\)

- Đổi khoảng cách từ \(d\left( {B;\left( {SCD} \right)} \right)\) sang \(d\left( {H;\left( {SCD} \right)} \right)\) với \(H\) là chân đường cao của khối chóp, sử dụng công thức: \(\dfrac{{d\left( {B;\left( {SCD} \right)} \right)}}{{d\left( {H;\left( {SCD} \right)} \right)}} = \dfrac{{BM}}{{HM}}\) với \(M = BH \cap \left( {SCD} \right)\).

- Xác định khoảng cách từ \(H\) đến \(\left( {SCD} \right)\). Áp dụng hệ thức lượng trong tam giác vuông để tính khoảng cách.

Giải chi tiết

Gọi \(H\) là trọng tâm tam giác đều \(ABC\) \( \Rightarrow SH \bot \left( {ABCD} \right)\).

\( \Rightarrow HD\) là hình chiếu của \(SD\) lên \(\left( {ABCD} \right)\).

\( \Rightarrow \angle \left( {SD;\left( {ABCD} \right)} \right) = \angle \left( {SD;HD} \right) = \angle SDH = {30^0}\).

Ta có: \(\dfrac{{BH}}{{BO}} = \dfrac{2}{3} \Rightarrow \dfrac{{BH}}{{BD}} = \dfrac{1}{3} \Rightarrow \dfrac{{HD}}{{BD}} = \dfrac{2}{3}\).

Mà \(BH \cap \left( {SCD} \right) = D\)\( \Rightarrow \dfrac{{d\left( {B;\left( {SCD} \right)} \right)}}{{d\left( {H;\left( {SCD} \right)} \right)}} = \dfrac{{BD}}{{HD}} = \dfrac{3}{2}\)\( \Rightarrow d\left( {B;\left( {SCD} \right)} \right) = \dfrac{3}{2}d\left( {H;\left( {SCD} \right)} \right)\).

Ta có \(H\) là trọng tâm tam giác đều \(ABC\)nên \(HC \bot AB\). Mà \(AB\parallel CD\) nên \(HC \bot CD\).

Trong \(\left( {SHC} \right)\) kẻ \(HK \bot SC\).

Ta có \(\left\{ \begin{array}{l}CD \bot CH\\CD \bot SH\end{array} \right. \Rightarrow CD \bot \left( {SHC} \right)\) \( \Rightarrow CD \bot HK\).

\(\left\{ \begin{array}{l}HK \bot SC\\HK \bot CD\end{array} \right. \Rightarrow HK \bot \left( {SCD} \right)\) \( \Rightarrow d\left( {H;\left( {SCD} \right)} \right) = HK\).

Vì tam giác \(ABC\) đều cạnh \(a\) nên \(HC = \dfrac{2}{3}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{3}\).

Ta có: \(\dfrac{{HD}}{{BD}} = \dfrac{2}{3}\), mà \(BD = 2BO = 2.\dfrac{{a\sqrt 3 }}{2} = a\sqrt 3 \)\( \Rightarrow HD = \dfrac{2}{3}BD = \dfrac{{2a\sqrt 3 }}{3}\)

Xét tam giác vuông \(SHD\) ta có: \(SH = HD.\tan {30^0} = \dfrac{{2a\sqrt 3 }}{3}.\dfrac{{\sqrt 3 }}{3} = \dfrac{{2a}}{3}.\)

Áp dụng hệ thức lượng trong tam giác vuông \(SHC\) ta có: \(\dfrac{1}{{H{K^2}}} = \dfrac{1}{{S{H^2}}} + \dfrac{1}{{H{C^2}}} = \dfrac{1}{{\dfrac{{4{a^2}}}{9}}} + \dfrac{1}{{\dfrac{{{a^2}}}{3}}} = \dfrac{{21}}{{4a^2}}.\)

\( \Rightarrow HK = \dfrac{{2\sqrt {21} }}{{21}}a\)

Vậy \(d\left( {B;\left( {SCD} \right)} \right) = \dfrac{3}{2}HK = \dfrac{{3\sqrt {21} }}{{21}}a\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com