Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong một thí nghiệm về giao thoa sóng nước, hai nguồn kết hợp O1 và O2 dao động cùng pha, cùng

Câu hỏi số 393865:
Vận dụng cao

Trong một thí nghiệm về giao thoa sóng nước, hai nguồn kết hợp O1 và O2 dao động cùng pha, cùng biên độ. Chọn hệ trục tọa độ vuông góc xOy thuộc mặt nước với gốc tọa độ là vị trí đặt nguồn O1 còn nguồn O2 nằm trên trục Oy. Hai điểm P và Q nằm trêm Ox có OP = 9 cm và OQ = 16 cm. Dịch chuyển nguồn O2 trên trục Oy đến vị trí sao cho góc \(\widehat {P{O_2}Q}\) có giá trị lớn nhất thì phần tử nước tại P không dao động còn phần tử nước tại Q dao động với biên độ cực đại. Biết giữa P và Q không còn cực đại nào khác. Trên OP, điểm gần P nhất mà các phần tử nước dao động với biên độ cực đại cách P một đoạn là

 

Đáp án đúng là: A

Quảng cáo

Câu hỏi:393865
Phương pháp giải

Công thức lượng giác: \(\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a.\tan b}}\)

Bất đẳng thức Cô – si: \(a + b \ge 2\sqrt {ab} \) (dấu “=” xảy ra \( \Leftrightarrow a = b\))

Điều kiện cực đại giao thoa: \({d_2} - {d_1} = k\lambda \)

Điều kiện cực tiểu giao thoa: \({d_2} - {d_1} = \left( {k + \dfrac{1}{2}} \right)\lambda \)

Giải chi tiết

 

Ta có: \(\widehat {P{O_2}Q} = {\varphi _2} - {\varphi _1}\)

\(\begin{array}{l} \Rightarrow \tan \widehat {P{O_2}Q} = \tan \left( {{\varphi _2} - {\varphi _1}} \right) = \dfrac{{\tan {\varphi _2} - \tan {\varphi _1}}}{{1 + \tan {\varphi _2}.\tan {\varphi _1}}}\\ \Rightarrow \tan \left( {{\varphi _2} - {\varphi _1}} \right) = \dfrac{{\dfrac{{{O_1}Q}}{{{O_1}{O_2}}} - \dfrac{{{O_1}P}}{{{O_1}{O_2}}}}}{{1 + \dfrac{{{O_1}Q}}{{{O_1}{O_2}}}.\dfrac{{{O_1}P}}{{{O_1}{O_2}}}}} = \dfrac{{\dfrac{{{O_1}Q}}{a} - \dfrac{{{O_1}P}}{a}}}{{1 + \dfrac{{{O_1}Q}}{a}.\dfrac{{{O_1}P}}{a}}}\\ \Rightarrow \tan \left( {{\varphi _2} - {\varphi _1}} \right) = \dfrac{{{O_1}Q - {O_1}P}}{{a + \dfrac{{{O_1}Q.{O_1}P}}{a}}} = \dfrac{{const}}{{a + \dfrac{{{O_1}Q.{O_1}P}}{a}}}\end{array}\)

Để \(\tan \left( {{\varphi _2} - {\varphi _1}} \right)\max  \Leftrightarrow \left( {a + \dfrac{{{O_1}Q.{O_1}P}}{a}} \right)\min \)

Áp dụng bất đẳng thức Cô – si, ta có:

\(\begin{array}{l}a + \dfrac{{{O_1}Q.{O_1}P}}{a} \ge 2\sqrt {a.\dfrac{{{O_1}Q.{O_1}P}}{a}} \\ \Rightarrow \left( {a + \dfrac{{{O_1}Q.{O_1}P}}{a}} \right)\min  = 2\sqrt {{O_1}Q.{O_1}P} \end{array}\)

(Dấu “=” xảy ra \( \Leftrightarrow a = \sqrt {{O_1}Q.{O_1}P}  = \sqrt {9.16}  = 12\,\,\left( {cm} \right)\))

Ta có: \({O_2}P = \sqrt {{a^2} + {O_1}{P^2}}  = \sqrt {{{12}^2} + {9^2}}  = 15\,\,\left( {cm} \right)\)

\({O_2}Q = \sqrt {{a^2} + {O_1}{Q^2}}  = \sqrt {{{12}^2} + {{16}^2}}  = 20\,\,\left( {cm} \right)\)

Điểm P không dao động, ta có: \(P{O_2} - P{O_1} = 15 - 9 = \left( {k + \dfrac{1}{2}} \right)\lambda \)

Điểm Q dao động với biên độ cực đại: \(Q{O_2} - Q{O_1} = 20 - 16 = k\lambda \)

Ta có hệ phương trình:

\(\left\{ \begin{array}{l}6 = \left( {k + \dfrac{1}{2}} \right)\lambda \\4 = k\lambda \end{array} \right. \Rightarrow \left\{ \begin{array}{l}k = 1\\\lambda  = 4\,\,\left( {cm} \right)\end{array} \right.\)

→ Q là cực đại bậc 1, giữa P và Q không có cực đại nào khác

Trên OP, gọi N là điểm gần nhất dao động với biên độ cực đại

→ N là cực đại bậc 2 ứng với k = 2, ta có:

\(\begin{array}{l}\sqrt {O{N^2} + {a^2}}  - ON = 2\lambda \\ \Rightarrow \sqrt {O{N^2} + {{12}^2}}  - ON = 2.4 \Rightarrow ON = 5\,\,\left( {cm} \right)\\ \Rightarrow PN = {O_1}P - ON = 9 - 5 = 4\,\,\left( {cm} \right)\end{array}\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com