Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Trong một tổ học sinh có \(5\) em gái và \(10\) em trai. Thùy là \(1\) trong \(5\) em gái và Thiện là

Câu hỏi số 399906:
Vận dụng

Trong một tổ học sinh có \(5\) em gái và \(10\) em trai. Thùy là \(1\) trong \(5\) em gái và Thiện là \(1\) trong \(10\) em trai. Thầy chủ nhiệm chọn ra \(1\) nhóm 5 bạn tham gia buổi văn nghệ tới. Hỏi thầy chủ nhiệm có bao nhiêu cách chọn mà trong đó có ít nhất một trong hai em Thùy và Thiện không được chọn?

Đáp án đúng là: C

Câu hỏi:399906
Phương pháp giải

Do ở đây việc tìm trực tiếp sẽ có nhiều trường hợp nên ta sẽ giải quyết bài toán bằng cách gián tiếp, ta sẽ đi tìm bài toán đối. Ta tìm số cách chọn ra \(5\) bạn mà trong đó có cả bạn Thùy và Thiện.

Giải chi tiết

Bài toán đối: tìm số cách chọn ra \(5\) bạn mà trong đó có cả bạn Thùy và Thiện.

Bước 1: Chọn nhóm \(3\) em trong \(13\) em (\(13\) em này không tính em Thùy và Thiện) có \(C_{13}^3 = 286\) cách.

Bước 2: Chọn \(2\) em Thùy và Thiện có 1 cách.

Vậy theo quy tắc nhân thì ta có \(286\) cách chọn \(5\) em mà trong đó có cả \(2\) em Thùy và Thiện.

Chọn \(5\) em bất kì trong số \(15\) em thì ta có: \(C_{15}^5 = 3003\) cách.

Vậy theo yêu cầu đề bài thì có tất cả \(3003-286 = 2717\) cách chọn mà trong đó có ít nhất một trong hai em Thùy Và Thiện không được chọn.

Tham Gia Group Dành Cho 2K7 luyện thi Tn THPT - ĐGNL - ĐGTD

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com