Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho khối lăng trụ đứng \(ABCD.A'B'C'D'\) có đáy là hình thoi cạnh \(a\), \(BD = \sqrt 3 a\) và \(AA' =

Câu hỏi số 401617:
Thông hiểu

Cho khối lăng trụ đứng \(ABCD.A'B'C'D'\) có đáy là hình thoi cạnh \(a\), \(BD = \sqrt 3 a\) và \(AA' = 4a\) (minh họa như hình bên). Thể tích của khối lăng trụ đã cho bằng

Đáp án đúng là: A

Quảng cáo

Câu hỏi:401617
Phương pháp giải

- Tính diện tích tam giác \(ABD\), sử dụng công thức He-rong \(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \) với \(p\) là nửa chu vi tam giác, \(a,\,\,b,\,\,c\) là độ dài 3 cạnh của tam giác.

- Suy ra \({S_{ABCD}} = 2{S_{ABD}}\).

- Tính thể tích khối lăng trụ \(V = AA'.{S_{ABCD}}\).

Giải chi tiết

Gọi \(p\) là nửa chu vi tam giác \(ABD\), ta có \(p = \dfrac{{AB + AD + BD}}{2} = \dfrac{{a + a + a\sqrt 3 }}{2} = \dfrac{{2 + \sqrt 3 }}{2}a\).

Diện tích tam giác \(ABD\) là: \(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)}  = \dfrac{{{a^2}\sqrt 3 }}{4}\).

\( \Rightarrow {S_{ABCD}} = 2{S_{ABD}} = \dfrac{{{a^2}\sqrt 3 }}{2}\).

Vậy \({V_{ABCD}} = AA'.{S_{ABCD}} = 4a.\dfrac{{{a^2}\sqrt 3 }}{2} = 2{a^3}\sqrt 3 \).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com