Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(B\) và \(C\), \(AB = 2BC = 4CD = 2a\),

Câu hỏi số 402871:
Vận dụng cao

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(B\) và \(C\), \(AB = 2BC = 4CD = 2a\), giả sử  \(M\) và \(N\) lần lượt là trung điểm của  \(AB\) và \(BC\). Hai mặt phẳng \(\left( {SMN} \right)\)và \(\left( {SBD} \right)\) cùng vuông góc với mặt phẳng đáy, và cạnh bên \(SB\) hợp với \(\left( {ABCD} \right)\) một góc \({60^0}\). Khoảng cách giữa \(SN\) và \(BD\) là:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:402871
Phương pháp giải

- Gọi \(H\) là giao điểm của \(MN\) và \(BD\). Chứng minh \(SH \bot \left( {ABCD} \right)\).

- Xác định góc giữa \(SB\) và mặt đáy là góc giữa \(SB\) và hình chiếu của \(SB\) lên mặt đáy.

- Chứng minh \(BD \bot MN\) bằng cách chứng minh \(\overrightarrow {BD} .\overrightarrow {MN}  = 0\).

- Chứng minh \(BD \bot \left( {SMN} \right)\), từ đó dựng đoạn vuông góc chung của \(\) và \(BD\).

- Sử dụng định lí Pytago và hệ thức lượng trong tam giác vuông để tính khoảng cách.

Giải chi tiết

Gọi \(H\) là giao điểm của \(MN\) và \(BD\).

Ta có \(\left\{ \begin{array}{l}SH = \left( {SMN} \right) \cap \left( {SBD} \right)\\\left( {SMN} \right) \bot \left( {ABCD} \right)\\\left( {SBD} \right) \bot \left( {ABCD} \right)\end{array} \right. \Rightarrow SH \bot \left( {ABCD} \right)\).

Ta có \(SH \bot \left( {ABCD} \right) \Rightarrow \) \(BH\) là hình chiếu của \(SB\) lên \(\left( {ABCD} \right)\) nên \(\angle \left( {SB;\left( {ABCD} \right)} \right) = \angle \left( {SB;HB} \right)\)\( = \angle SBH = {60^0}\).

Từ giả thiết có \(BC = a\,,\,\,AB = 2a\,,\,\,CD = \dfrac{a}{2}\).

Vì \(MN\) là đường trung bình của tam giác \(ABC\) nên \(MN = \dfrac{1}{2}AC\).

Xét \(\overrightarrow {MN} .\overrightarrow {BD}  = \dfrac{1}{2}\overrightarrow {AC} .\overrightarrow {BD} \)

\(\begin{array}{l} = \dfrac{1}{2}\left( {\overrightarrow {BC}  - \overrightarrow {BA} } \right).\left( {\overrightarrow {BC}  + \overrightarrow {CD} } \right)\\ = \dfrac{1}{2}B{C^2} + \dfrac{1}{2}\underbrace {\overrightarrow {BC} .\overrightarrow {CD} }_0 - \dfrac{1}{2}\underbrace {\overrightarrow {BA} .\overrightarrow {BC} }_0 - \dfrac{1}{2}\overrightarrow {BA} .\overrightarrow {CD} \\ = \dfrac{1}{2}.{a^2} - \dfrac{1}{2}.BA.CD.\cos 0\\ = \dfrac{{{a^2}}}{2} - \dfrac{1}{2}.2a.\dfrac{a}{2} = 0\end{array}\)

Suy ra \(BD \bot MN\).

Ta có \(\left\{ \begin{array}{l}BD \bot SH\\BD \bot MN\end{array} \right. \Rightarrow BD \bot \left( {SMN} \right)\).

Mà \(BD \cap \left( {SMN} \right) = \left\{ H \right\}\) nên trong mặt phẳng \(\left( {SMN} \right)\) gọi \(K\) là hình chiếu của \(H\) lên \(SN\), suy ra .. là đoạn vuông góc chung của \(BD\,,\,\,SN\)\( \Rightarrow d\left( {BD\,,\,SN} \right) = HK\).

Áp dụng hệ thức lượng trong tam giác vuông \(BMN\) có \(\dfrac{1}{{B{H^2}}} = \dfrac{1}{{B{M^2}}} + \dfrac{1}{{B{N^2}}} = \dfrac{1}{{{a^2}}} + \dfrac{1}{{{{\left( {\dfrac{a}{2}} \right)}^2}}} = \dfrac{5}{{{a^2}}}\)\( \Rightarrow BH = \dfrac{a}{{\sqrt 5 }}\).

Trong tam giác vuông \(HBS\) vuông tại \(H\) có: \(SH = HB.tan{60^0} = \dfrac{{a\sqrt {15} }}{5}\).

Áp dụng định lí Pytago trong tam giác vuông \(HBN\) có \(HN = \sqrt {B{N^2} - H{B^2}}  = \sqrt {\dfrac{{{a^2}}}{4} - \dfrac{{{a^2}}}{5}}  = \dfrac{{a\sqrt 5 }}{{10}}\).

Áp dụng hệ thức lượng trong tam giác vuông \(HSN\) có

\(\dfrac{1}{{H{K^2}}} = \dfrac{1}{{H{{\rm{S}}^2}}} + \dfrac{1}{{H{N^2}}} = \dfrac{1}{{\dfrac{{3{a^2}}}{5}}} + \dfrac{1}{{\dfrac{{{a^2}}}{{20}}}} = \dfrac{{65}}{{3{a^2}}}\)\( \Rightarrow HK = \dfrac{{a\sqrt {195} }}{{65}}\).

Vậy\(d\left( {BD\,,\,SN} \right) = \dfrac{{a\sqrt {195} }}{{65}}\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com