Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(B\) và \(C\), \(AB = 2BC = 4CD = 2a\),
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(B\) và \(C\), \(AB = 2BC = 4CD = 2a\), giả sử \(M\) và \(N\) lần lượt là trung điểm của \(AB\) và \(BC\). Hai mặt phẳng \(\left( {SMN} \right)\)và \(\left( {SBD} \right)\) cùng vuông góc với mặt phẳng đáy, và cạnh bên \(SB\) hợp với \(\left( {ABCD} \right)\) một góc \({60^0}\). Khoảng cách giữa \(SN\) và \(BD\) là:
Đáp án đúng là: B
Quảng cáo
- Gọi \(H\) là giao điểm của \(MN\) và \(BD\). Chứng minh \(SH \bot \left( {ABCD} \right)\).
- Xác định góc giữa \(SB\) và mặt đáy là góc giữa \(SB\) và hình chiếu của \(SB\) lên mặt đáy.
- Chứng minh \(BD \bot MN\) bằng cách chứng minh \(\overrightarrow {BD} .\overrightarrow {MN} = 0\).
- Chứng minh \(BD \bot \left( {SMN} \right)\), từ đó dựng đoạn vuông góc chung của \(\) và \(BD\).
- Sử dụng định lí Pytago và hệ thức lượng trong tam giác vuông để tính khoảng cách.
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













