Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị hàm số như hình bên: Khẳng

Câu hỏi số 403110:
Nhận biết

Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị hàm số như hình bên:

Khẳng định nào sau đây là đúng?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:403110
Phương pháp giải

- Dựa vào \(\mathop {\lim }\limits_{x \to  + \infty } y\) để xác định dấu của hệ số \(a\).

- Dựa vào giao điểm của đồ thị hàm số và trục tung để xác định dấu của hệ số \(d\).

- Dựa vào tổng và tích các cực trị để xác định dấu của hệ số \(b,\,\,c\).

- Sử dụng định nghĩa các đường tiệm cận của đồ thị hàm số \(y = f\left( x \right)\).

Giải chi tiết

Vì nhánh cuối cùng của đồ thị hàm số đi xuống nên \(a < 0\)

Vì đồ thị hàm số cắt trục tung tại điểm có tung độ dương nên \(d > 0\)

Dựa vào đồ thị hàm số ta thấy hàm số có 2 điểm cực trị \({x_1} = 0,\,\,{x_2} > 0\).

\( \Rightarrow \) Phương trình \(y' = 3a{x^2} + 2bx + c = 0\) có 2 nghiệm phân biệt thỏa mãn \({x_1} = 0,\,\,{x_2} > 0\).

\( \Leftrightarrow \left\{ \begin{array}{l}{b^2} - 3ac > 0\\{x_1} + {x_2} = \dfrac{{ - 2b}}{{3a}} > 0\\{x_1}{x_2} = \dfrac{c}{{3a}} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a < 0\\b > 0\\c = 0\end{array} \right.\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com