Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian Oxyz, cho hai điểm \(A\left( {0;1;2} \right),\) \(B\left( { - 3;4; - 1} \right)\) và mặt

Câu hỏi số 404442:
Vận dụng

Trong không gian Oxyz, cho hai điểm \(A\left( {0;1;2} \right),\) \(B\left( { - 3;4; - 1} \right)\) và mặt phẳng \(\left( P \right):\,\,2x - 2y - z - 2 = 0\). Xét điểm M thay đổi thuộc \(\left( P \right)\), giá trị nhỏ nhất của \(2M{A^2} + M{B^2}\) bằng

Đáp án đúng là: B

Quảng cáo

Câu hỏi:404442
Phương pháp giải

- Tìm tọa độ điểm I sao cho \(2\overrightarrow {IA}  + \overrightarrow {IB}  = \overrightarrow 0 \).

- Tìm M là hình chiếu của I trên \(\left( P \right)\).

Giải chi tiết

Ta có \(A\left( {0;1;2} \right),B\left( { - 3;4; - 1} \right)\) và \(2\overrightarrow {IA}  + \overrightarrow {IB}  = \overrightarrow 0 \)

Nên \(I\left( { - 1;2;1} \right)\).

Khi đó ta có

\(2M{A^2} + M{B^2} = 2{\left( {\overrightarrow {MI}  + \overrightarrow {IA} } \right)^2} + {\left( {\overrightarrow {MI}  + \overrightarrow {IB} } \right)^2} = 3M{I^2} + 2I{A^2} + I{B^2} + 2\overrightarrow {MI} \left( {2\overrightarrow {IA}  + \overrightarrow {IB} } \right) = 3M{I^2} + 2I{A^2} + I{B^2}\)

Có giá trị nhỏ nhất khi \(MI\) nhỏ nhất hay M là hình chiếu của I  trên \(\left( P \right)\).

Ta có \(M\left( { - 1 + 2t;2 - 2t;1 - t} \right) \in \left( P \right):2x - 2y - z - 2 = 0\) nên \(t = 1 \Rightarrow M\left( {1;0;0} \right)\)

Khi đó \(T = 2M{A^2} + M{B^2} = 45\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com