Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x - 3y + 2z - 5 = 0\) và hai điểm \(A\left( {2;4;1}

Câu hỏi số 404885:
Vận dụng

Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x - 3y + 2z - 5 = 0\) và hai điểm \(A\left( {2;4;1} \right)\),\(B\left( { - 1;1;3} \right)\). Viết phương trình mặt phẳng \(\left( Q \right)\) đi qua hai điểm \(A,\,\,B\) và vuông góc với mặt phẳng \(\left( P \right)\).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:404885
Phương pháp giải

Áp dụng công thức tính tích có hướng của hai vecto.

Giải chi tiết

Gọi vecto pháp tuyến của mặt phẳng \(\left( Q \right)\) là \(\overrightarrow u \)

Ta có mặt phẳng \(\left( Q \right)\) đi qua \(A\left( {2;4;1} \right);B\left( { - 1;1;3} \right)\) và vuông góc với mặt phẳng \(\left( P \right)\):\(x - 3y + 2z - 5 = 0\)

Nên \(\left\{ \begin{array}{l}\overrightarrow u  \bot \overrightarrow {AB}  = \left( { - 3; - 3;2} \right)\\\overrightarrow u  \bot \overrightarrow n  = \left( {1; - 3;2} \right)\end{array} \right. \Rightarrow \overrightarrow u  = \left[ {\overrightarrow {AB} ;\overrightarrow n } \right] = \left( {0;8;12} \right)\) hay \(\left( {0;2;3} \right)\)

Mặt phẳng \(\left( Q \right)\) có vecto pháp tuyến \(\overrightarrow u  = \left( {0;2;3} \right)\) và đi qua điểm \(A\left( {2;4;1} \right)\) nên có phương trình là \(2y + 3z - 11 = 0\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com