Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho số phức \(z = a + bi\) với \(a;b \in \mathbb{R}\) thỏa mãn \(\left( {1 + i} \right)z + \left( {2 - i}

Câu hỏi số 406719:
Thông hiểu

Cho số phức \(z = a + bi\) với \(a;b \in \mathbb{R}\) thỏa mãn \(\left( {1 + i} \right)z + \left( {2 - i} \right)\overline z  = 13 + 2i.\) Tính tổng \(a + b\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:406719
Phương pháp giải

Cho số phức \(z = a + bi\,\,\left( {a,\,\,b \in \mathbb{R}} \right) \Rightarrow \overline z  = a - bi.\)

Giải chi tiết

Ta có: \(z = a + bi \Rightarrow \overline z  = a - bi.\)

\(\begin{array}{l} \Rightarrow \left( {1 + i} \right)z + \left( {2 - i} \right)\overline z  = 13 + 2i\\ \Leftrightarrow \left( {1 + i} \right)\left( {a + bi} \right) + \left( {2 - i} \right)\left( {a - bi} \right) = 13 + 2i\\ \Leftrightarrow a + ai + bi + b{i^2} + 2a - 2bi - ai + b{i^2} = 13 + 2i\\ \Leftrightarrow 3a - 2b - bi = 13 + 2i\\ \Leftrightarrow \left\{ \begin{array}{l}3a - 2b = 13\\ - b = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b =  - 2\end{array} \right.\\ \Rightarrow a + b = 3 - 2 = 1.\end{array}\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com