Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Phân tích đa thức thành nhân tử

Phân tích đa thức thành nhân tử

Trả lời cho các câu 1, 2 dưới đây:

Câu hỏi số 1:
Vận dụng

\({x^5} - 5{x^4} + 7{x^3} - 3{x^2}\)

Đáp án đúng là: B

Câu hỏi:408870
Phương pháp giải

Bước 1: Rút nhân tử chung \({x^2}\).

Bước 2: Tách biểu thức để tạo nhân tử chung \(x - 3\)

Bước 3: Áp dụng hằng đẳng thức: \({A^2} - 2AB + {B^2} = {\left( {A - B} \right)^2}\) để thu gọn biểu thức.

Giải chi tiết

\({x^5} - 5{x^4} + 7{x^3} - 3{x^2}\)

\(\begin{array}{l} = {x^2}\left( {{x^3} - 5{x^2} + 7x - 3} \right)\\ = {x^2}\left( {{x^3} - 3{x^2} - 2{x^2} + 6x + x - 3} \right)\\ = {x^2}\left[ {{x^2}\left( {x - 3} \right) - 2x\left( {x - 3} \right) + \left( {x - 3} \right)} \right]\\ = {x^2}\left( {x - 3} \right)\left( {{x^2} - 2x + 1} \right)\\ = {x^2}{\left( {x - 1} \right)^2}\left( {x - 3} \right)\end{array}\)

Đáp án cần chọn là: B

Câu hỏi số 2:
Vận dụng

\({a^3}b - 4{a^2}{b^2} + 4{b^3}a + 4a - 8b\)

Đáp án đúng là: A

Câu hỏi:408871
Phương pháp giải

Rút \(ab\) và sử dụng hằng đẳng thức \({A^2} - 2AB + {B^2} = {\left( {A - B} \right)^2}\) để tạo nhân tử chung \(a - 2b\).

Giải chi tiết

\({a^3}b - 4{a^2}{b^2} + 4{b^3}a + 4a - 8b\)

\(\begin{array}{l} = ab\left( {{a^2} - 4ab + 4{b^2}} \right) + 4\left( {a - 2b} \right)\\ = ab{\left( {a - 2b} \right)^2} + 4\left( {a - 2b} \right)\\ = \left( {a - 2b} \right)\left[ {ab\left( {a - 2b} \right) + 4} \right]\\ = \left( {a - 2b} \right)\left( {{a^2}b - 2a{b^2} + 4} \right)\end{array}\)

Đáp án cần chọn là: A

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com