Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Một hộp đựng 9 thẻ được đánh số từ 1 đến 9. Rút ngẫu nhiên 2 thẻ và nhân hai số ghi

Câu hỏi số 409664:
Vận dụng cao

Một hộp đựng 9 thẻ được đánh số từ 1 đến 9. Rút ngẫu nhiên 2 thẻ và nhân hai số ghi trên thẻ với nhau. Tính xác suất để tích hai số trên 2 thẻ được rút ra là số chẵn?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:409664
Phương pháp giải

- Tính số phần tử của không gian mẫu.

- Gọi A là biến cố: “tích hai số trên 2 thẻ được rút ra là số chẵn”, suy ra biến cố đối \(\overline A \).

- Tính số phần tử của biến cố đối và xác suất của biến cố đối.

- Sử dụng công thức \(P\left( A \right) = 1 - P\left( {\overline A } \right)\).

Giải chi tiết

Rút ngẫu nhiên 2 thẻ \( \Rightarrow n\left( \Omega  \right) = C_9^2\).

Gọi A là biến cố: “tích hai số trên 2 thẻ được rút ra là số chẵn” \( \Rightarrow \) Ít nhất 1 trong hai thẻ phải là số chẵn.

\( \Rightarrow \) Biến cố đổi \(\overline A \): “Không có thẻ nào là số chẵn” \( \Rightarrow \) Cả 2 thẻ đều là số lẻ.

Số cách chọn 2 số lẻ từ 9 số từ 1 đến 9 là \(C_5^2\) \( \Rightarrow n\left( {\overline A } \right) = C_5^2\).

Khi đó ta có \(P\left( {\overline A } \right) = \dfrac{{C_5^2}}{{C_9^2}} = \dfrac{5}{{18}}\).

Vậy \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \dfrac{5}{{18}} = \dfrac{{13}}{{18}}\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com