Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian \(Oxyz,\) mặt phẳng \(\left( \alpha  \right):\,\,\,\dfrac{x}{1} + \dfrac{y}{2} + \dfrac{z}{3} =

Câu hỏi số 410087:
Nhận biết

Trong không gian \(Oxyz,\) mặt phẳng \(\left( \alpha  \right):\,\,\,\dfrac{x}{1} + \dfrac{y}{2} + \dfrac{z}{3} = 1\) không đi qua điểm nào sau đây?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:410087
Phương pháp giải

Thay tọa độ các điểm trong các đáp án vào phương trình mặt phẳng \(\left( \alpha  \right)\) xem tọa độ điểm nào thỏa mãn phương trình mặt phẳng thì điểm đó thuộc mặt phẳng \(\left( \alpha  \right).\)

Tọa độ điểm nào không thỏa mãn phương trình mặt phẳng \(\left( \alpha  \right)\) thì ta chọn điểm đó.

Giải chi tiết

Thay tọa độ điểm \(C\left( {0;\,\,0;\,\,3} \right)\) vào phương trình \(\left( \alpha  \right)\) ta được: \(\dfrac{0}{1} + \dfrac{0}{2} + \dfrac{3}{3} = 1 \Rightarrow C \in \left( \alpha  \right).\)

Thay tọa độ điểm \(A\left( {1;\,\,0;\,\,0} \right)\) vào phương trình \(\left( \alpha  \right)\) ta được: \(\dfrac{1}{1} + \dfrac{0}{2} + \dfrac{0}{3} = 1 \Rightarrow A \in \left( \alpha  \right).\)

Thay tọa độ điểm \(B\left( {0;\,\,2;\,\,0} \right)\) vào phương trình \(\left( \alpha  \right)\) ta được: \(\dfrac{0}{1} + \dfrac{2}{2} + \dfrac{0}{3} = 1 \Rightarrow B \in \left( \alpha  \right).\)

\( \Rightarrow O\left( {0;\,\,0;\,\,0} \right) \notin \left( \alpha  \right).\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com