Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tập tất cả các giá trị của tham số \(m\) để hàm số \(y = \dfrac{1}{3}{x^3} + 2{x^2} - mx\) đồng

Câu hỏi số 410477:
Vận dụng

Tập tất cả các giá trị của tham số \(m\) để hàm số \(y = \dfrac{1}{3}{x^3} + 2{x^2} - mx\) đồng biến trên \(\mathbb{R}\) là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:410477
Phương pháp giải

- Tính \(y'\).

- Để hàm số \(y = f\left( x \right)\) đồng biến trên \(\mathbb{R}\) thì \(y' \ge 0\,\,\forall x \in \mathbb{R}\) (bằng 0 tại hữu hạn điểm).

- Xét dấu tam thức bậc hai: \(a{x^2} + bx + c \ge 0\,\,\forall x \in \mathbb{R}\,\,\left( {a \ne 0} \right)\) \( \Leftrightarrow \left\{ \begin{array}{l}a > 0\\\Delta  \le 0\end{array} \right.\).

Giải chi tiết

TXĐ: \(D = \mathbb{R}\) .

Ta có: \(y' = {x^2} + 4x - m\).

Để hàm số đã cho đồng biến trên \(\mathbb{R}\) thì \(y' \ge 0\,\,\forall x \in \mathbb{R}\) (bằng 0 tại hữu hạn điểm).

\( \Leftrightarrow {x^2} + 4x - m \ge 0\,\,\forall x \in \mathbb{R}\)  \( \Leftrightarrow \left\{ \begin{array}{l}1 > 0\,\,\left( {luon\,dung} \right)\\\Delta ' = 4 + m \le 0\end{array} \right. \Leftrightarrow m \le  - 4\).

Vậy \(\left( { - \infty ; - 4} \right].\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com