Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm tất cả các giá trị của tham số \(m\) để phương trình \({x^2} + {y^2} + 2mx - 4\left( {m + 1}

Câu hỏi số 413061:
Thông hiểu

Tìm tất cả các giá trị của tham số \(m\) để phương trình \({x^2} + {y^2} + 2mx - 4\left( {m + 1} \right)y + 4{m^2} + 5m + 2 = 0\)

là phương trình của một đường tròn trong mặt phẳng tọa độ Oxy.

Đáp án đúng là: C

Quảng cáo

Câu hỏi:413061
Phương pháp giải

Phương trình \({x^2} + {y^2} - 2ax - 2by + c = 0\) là phương trình đường tròn \( \Leftrightarrow {a^2} + {b^2} - c > 0\).

Giải chi tiết

\({x^2} + {y^2} + 2mx - 4\left( {m + 1} \right)y + 4{m^2} + 5m + 2 = 0\,\,\,\left( 1 \right)\)

Có \(a =  - m,\,\,b = 2\left( {m + 1} \right),\) \(c = 4{m^2} + 5m + 2\)

(1) là phương trình đường tròn \( \Leftrightarrow {a^2} + {b^2} - c > 0\)

\(\begin{array}{l} \Leftrightarrow {\left( { - m} \right)^2} + 4{\left( {m + 1} \right)^2} - \left( {4{m^2} + 5m + 2} \right) > 0\\ \Leftrightarrow {m^2} + 4\left( {{m^2} + 2m + 1} \right) - 4{m^2} - 5m - 2 > 0\\ \Leftrightarrow {m^2} + 4{m^2} + 8m + 4 - 4{m^2} - 5m - 2 > 0\\ \Leftrightarrow {m^2} + 3m + 2 > 0\\ \Leftrightarrow \left( {m + 1} \right)\left( {m + 2} \right) > 0\\ \Leftrightarrow \left[ \begin{array}{l}m >  - 1\\m <  - 2\end{array} \right.\end{array}\)

Đáp án cần chọn là: C

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com