Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Một chất điểm dao động điều hòa có li độ phụ thuộc theo thời gian được biểu diễn như

Câu hỏi số 417762:
Vận dụng cao

Một chất điểm dao động điều hòa có li độ phụ thuộc theo thời gian được biểu diễn như hình vẽ bên. Biết các khoảng chia từ \({t_1}\) trở đi bằng nhau nhưng không bằng khoảng chia từ \(0\) đến \({t_1}\). Quãng đường chất điểm đi được từ thời điểm \({t_2}\) đến thời điểm \({t_3}\) gấp \(2\) lần quãng đường chất điểm đi được từ thời điểm \(0\) đến thời điểm \({t_1}\) và \({t_3} - {t_2} = 0,2\,\,\left( s \right)\). Độ lớn vận tốc của chất điểm tại thời điểm \({t_3}\) xấp xỉ bằng

Đáp án đúng là: D

Quảng cáo

Câu hỏi:417762
Phương pháp giải

Sử dụng vòng tròn lượng giác và kĩ năng đọc đồ thị

Tần số góc: \(\omega  = \dfrac{{2\pi }}{T}\)

Tốc độ tại li độ x: \({v^2} = {\omega ^2}\left( {{A^2} - {x^2}} \right)\)

Giải chi tiết

Từ đồ thị ta thấy nửa chu kì ứng với 6 ô → 1 chu kì ứng với 12 ô

Khoảng cách mỗi ô là \(0,2\,\,s\)

\( \Rightarrow T = 12.0,2 = 2,4\,\,\left( s \right) \Rightarrow \omega  = \dfrac{{2\pi }}{{2,4}} = \dfrac{\pi }{{1,2}}\,\,\left( {rad/s} \right)\)

Với mỗi ô, vecto quay được góc tương ứng là:

\(\Delta \varphi  = \omega .\Delta t = \dfrac{{2\pi }}{T}.\dfrac{T}{{12}} = \dfrac{\pi }{6}\,\,\left( {rad} \right)\)

Ta có vòng tròn lượng giác:

 

Từ vòng tròn lượng giác, ta thấy quãng đường vật đi từ thời điểm \({t_2}\) đến thời điểm \({t_3}\) là:

\(S = \left| {{x_3} - {x_2}} \right| = \left| {A\cos \dfrac{\pi }{3} - A\cos \dfrac{\pi }{6}} \right| = \dfrac{{A\sqrt 3 }}{2} - \dfrac{A}{2}\)

Theo đề bài ta có:

\(S = 2\left( {A - 6} \right) \Rightarrow \dfrac{{A\sqrt 3 }}{2} - \dfrac{A}{2} = 2.\left( {A - 6} \right) \Rightarrow A = 7,344\,\,\left( {cm} \right)\)

Tốc độ của vật tại thời điểm \({t_3}\) là:

\(\begin{array}{l}{v^2} = {\omega ^2}\left( {{A^2} - {x^2}} \right) = {\omega ^2}.\left( {{A^2} - \dfrac{{{A^2}}}{4}} \right) = {\omega ^2}.\dfrac{3}{4}{A^2}\\ \Rightarrow v = \dfrac{{\sqrt 3 }}{2}\omega A = \dfrac{{\sqrt 3 }}{2}.\dfrac{\pi }{{1,2}}.7,344 = 16,65\,\,\left( {cm/s} \right)\end{array}\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com