Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Tìm giá trị \(x\) thỏa mãn

Tìm giá trị \(x\) thỏa mãn

Trả lời cho các câu 1, 2 dưới đây:

Câu hỏi số 1:
Vận dụng

\({x^3} - 25x = 0\)

Đáp án đúng là: A

Câu hỏi:417796
Phương pháp giải

Rút nhân tử chung \(x\) và giải phương trình tích \(A.B = 0 \Leftrightarrow \left[ \begin{array}{l}A = 0\\B = 0\end{array} \right.\)

Giải chi tiết

\(\begin{array}{l}x\left( {{x^2} - 25} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} - 25 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} = 25\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 5\\x =  - 5\end{array} \right.\end{array}\)

Vậy \(S = \left\{ {0; - 5;5} \right\}\)

Đáp án cần chọn là: A

Câu hỏi số 2:
Vận dụng

\(2x\left( {x - 2} \right) - x + 2 = 0\)

Đáp án đúng là: D

Câu hỏi:417797
Phương pháp giải

Sử dụng hằng đẳng thức \(\left( {A + B} \right)\left( {A - B} \right) = {A^2} - {B^2}\) và rút 2 ở 2 hạng tử cuối để tạo nhân tử chung \(x + y\)

Giải chi tiết

\(\begin{array}{l}2x\left( {x - 2} \right) - \left( {x - 2} \right) = 0\\ \Leftrightarrow \left( {x - 2} \right)\left( {2x - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 2 = 0\\2x - 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = \dfrac{1}{2}\end{array} \right.\end{array}\)

Vậy \(S = \left\{ {2;\dfrac{1}{2}} \right\}\)

Đáp án cần chọn là: D

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com