Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho số phức \(z\) thỏa mãn \(z + 2\overline z  = 6 + i.\) Số phức \(z\) đã cho là nghiệm của

Câu hỏi số 418101:
Thông hiểu

Cho số phức \(z\) thỏa mãn \(z + 2\overline z  = 6 + i.\) Số phức \(z\) đã cho là nghiệm của phương trình nào dưới đây?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:418101
Phương pháp giải

Gọi \(z = a + bi\,\,\left( {a,\,\,b \in \mathbb{R}} \right) \Rightarrow \overline z  = a - bi.\)

Từ biểu thức bài cho, tìm số phức \(z\) sau đó thay số phức \(z\) vừa tìm được vào các phương trình ở các đáp án để chọn đáp án đúng.

Hoặc giải các phương trình ở các đáp án đã cho, tìm phương trình chứa nghiệm là số phức \(z\) đã tìm được ở trên.

Giải chi tiết

Gọi \(z = a + bi\,\,\left( {a,\,\,b \in \mathbb{R}} \right) \Rightarrow \overline z  = a - bi.\)

Theo đề bài ta có: \(z + 2\overline z  = 6 + i\)

\(\begin{array}{l} \Leftrightarrow a + bi + 2\left( {a - bi} \right) = 6 + i\\ \Leftrightarrow a + bi + 2a - 2bi = 6 + i\\ \Leftrightarrow 3a - bi = 6 + i\\ \Leftrightarrow \left\{ \begin{array}{l}3a = 6\\ - b = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b =  - 1\end{array} \right. \Rightarrow z = 2 - i.\end{array}\)

+) Đáp án A: \({z^2} - 4z + 5 = 0 \Leftrightarrow \left[ \begin{array}{l}z = 2 + i\\z = 2 - i\end{array} \right.\)

\( \Rightarrow z = 2 - i\) là nghiệm của phương trình \({z^2} - 4z + 5 = 0\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com