Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Một bồn cây có dạng hình tròn bán kính \(1m\). Do yêu cầu mở rộng diện tích mà bồn cây

Câu hỏi số 420955:
Vận dụng

Một bồn cây có dạng hình tròn bán kính \(1m\). Do yêu cầu mở rộng diện tích mà bồn cây được mở rộng bằng cách tăng bán kính thêm \(0,6m.\) Tính diện tích tăng thêm của bồn cây đó (lấy \(\pi  \approx 3,14\) và kết quả làm tròn đến một chữ số thập phân).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:420955
Phương pháp giải

Diện tích đường tròn bán kính \(R\) là: \(S = \pi {R^2}.\)

Diện tích phần bồn cây tăng thêm là: \(S = \pi {R^2} - \pi {r^2}.\)

Giải chi tiết

Diện tích của bồn cây ban đầu là: \({S_1} = \pi {r^2} = \pi \,\,\left( {{m^2}} \right).\)

Bán kính của bồn cây sau khi mở rộng là: \(R = 1 + 0,6 = 1,6\,\,m.\)

Diện tích của bồn cây sau khi mở rộng là: \({S_2} = \pi {R^2} = \pi .1,{6^2}\,\,\left( {{m^2}} \right).\)

\( \Rightarrow \) Diện tích của phần bồn cây mở rộng thêm là: \(S = \pi .1,{6^2} - \pi  = \left( {1,{6^2} - 1} \right).3,14 \approx 4,9\,\,{m^2}.\)

Đáp án cần chọn là: D

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com