Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tứ giác ABCD (AD > BC) nội tiếp đường tròn tâm O đường kính AB. Hai đường chéo AC và BD

Câu hỏi số 423304:
Vận dụng

Cho tứ giác ABCD (AD > BC) nội tiếp đường tròn tâm O đường kính AB. Hai đường chéo AC và BD cắt nhau tại E. Gọi H là hình chiếu của E trên AB.

a) Chứng minh ADEH là tứ giác nội tiếp.

b) Tia CH cắt đường tròn (O) tại điểm thứ hai là K. Gọi I là giao điểm của DK và AB. Chứng minh \(D{I^2} = AI.BI\).

c) Khi tam giác DAB không cân, gọi M là trung điểm của EB, tia DC cắt tia HM tại N. Tia NB cắt đường tròn ngoại tiếp tam giác HMB tại điểm thứ hai là F. Chứng minh F thuộc đường tròn (O).

Quảng cáo

Câu hỏi:423304
Giải chi tiết

a) Chứng minh ADEH là tứ giác nội tiếp.

Ta có: \(\angle ADB = {90^0}\) (góc nội tiếp chắn nửa đường tròn)

\(EH \bot AB \Rightarrow \angle AHE = {90^0}\)

Tứ giác ADEH có: \(\angle ADE + \angle AHE = {90^0} + {90^0} = {180^0}\) nên là tứ giác nội tiếp (đpcm)

b) Tia CH cắt đường tròn (O) tại điểm thứ hai là K. Gọi I là giao điểm của DK và AB. Chứng minh \(D{I^2} = AI.BI\).

Tứ giác ADCK nội tiếp nên \(\angle ADK = \angle ACK\) (hai góc nội tiếp cùng chắn cung \(AK\))  (1)

Xét tứ giác ECBH có:

\(\angle ECB = \angle ACB = {90^0}\) (góc nội tiếp chắn nửa đường tròn)

\(\angle EHB = {90^0}\left( {do\,\,EH \bot AB} \right)\)

\( \Rightarrow \angle ECB + \angle EHB = {90^0} + {90^0} = {180^0}\)

Do đó tứ giác ECBH nội tiếp (tứ giác có hai góc đối có tổng số đo bằng \({180^0}\))

\( \Rightarrow \angle ECH = \angle EBH\) (hai góc nội tiếp cùng chắn cung EH)

\( \Rightarrow \angle ACK = \angle DBA\)  (2)

Từ (1) và (2) suy ra \(\angle ADK = \angle DBA \Rightarrow \angle ADI = \angle DBA\)

Lại có \(\angle DBA + \angle DAB = {90^0}\) nên \(\angle ADI + \angle DAB = {90^0}\) hay \(\angle ADI + \angle DAI = {90^0}\)

\( \Rightarrow \angle DIA = {180^0} - \left( {\angle ADI + \angle DAI} \right) = {180^0} - {90^0} = {90^0}\)

\( \Rightarrow DI \bot AB\) nên DI là đường cao trong tam giác vuông ADB

\( \Rightarrow D{I^2} = IA.IB\) (hệ thức giữa cạnh và đường cao trong tam giác vuông) (đpcm)

c) Khi tam giác DAB không cân, gọi M là trung điểm của EB, tia DC cắt tia HM tại N. Tia NB cắt đường tròn ngoại tiếp tam giác HMB tại điểm thứ hai là F. Chứng minh F thuộc đường tròn (O).

Theo câu b, \(DK \bot BA\) tại \(I\) nên AB là đường trung trực của DK

\( \Rightarrow DA = AK\) \( \Rightarrow sd\,cung\,AD = sd\,cung\,AK\)

\( \Rightarrow \angle DCA = \angle ACK\) \( \Rightarrow CA\) là tia phân giác của góc \(\angle DCH\)

\( \Rightarrow \angle DCH = 2\angle ECH\)  (3)

Tam giác EHB vuông tại H có M là trung điểm EB nên \(HM\) là đường trung tuyến

\( \Rightarrow MH = MB \Rightarrow \Delta MHB\) cân tại \(M\)

\( \Rightarrow \angle DMH = \angle MHB + \angle MBH = 2\angle MBH = 2\angle EBH\) (4)

Tứ giác ECBH có: \(\angle ECB + \angle EHB = {90^0} + {90^0} = {180^0}\) nên là tứ giác nội tiếp (tứ giác có tổng hai góc đối bằng \({180^0}\))

\( \Rightarrow \angle ECH = \angle EBH\) (5)

Từ (3), (4) và (5) suy ra \(\angle DCH = \angle DMH\)

\( \Rightarrow DCMH\) là tứ giác nội tiếp (hai đỉnh kề nhau cùng nhìn cạnh đối diện các góc bằng nhau)

\( \Rightarrow \angle NCM = \angle NHD\) (tính chất)

Xét \(\Delta NCM\) và \(\Delta NHD\) có:

Góc \(N\) chung

\(\angle NCM = \angle NHD\,\,\left( {cmt} \right)\)

\( \Rightarrow \Delta NCM \sim \Delta NHD\left( {g - g} \right)\)

\( \Rightarrow \dfrac{{NC}}{{NH}} = \dfrac{{NM}}{{ND}}\) (cạnh tương ứng)

\( \Rightarrow NC.ND = NM.NH\)  (6)

Tứ giác \(HMBF\) nội tiếp nên \(\angle NMB = \angle NFH\) (tính chất)

Xét \(\Delta NMB\) và \(\Delta NFH\) có:

Góc \(N\) chung

\(\angle NMB = \angle NFH\) (cmt)

\( \Rightarrow \Delta NMB \sim \Delta NFH\left( {g - g} \right)\)

\( \Rightarrow \dfrac{{NM}}{{NF}} = \dfrac{{NB}}{{NH}}\) (cạnh tương ứng)

\( \Rightarrow NM.NH = NB.NF\) (7)

Từ (6) và (7) suy ra \(NC.ND = NF.NB \Rightarrow \dfrac{{NC}}{{NF}} = \dfrac{{NB}}{{ND}}\)

Xét \(\Delta NBC\) và \(\Delta NDF\) có:

Góc \(N\) chung

\(\begin{array}{l}\dfrac{{NC}}{{NF}} = \dfrac{{NB}}{{ND}}\left( {cmt} \right)\\ \Rightarrow \Delta NBC \sim \Delta NDF\left( {c - g - c} \right)\end{array}\)

\( \Rightarrow \angle NCB = \angle NFD = \angle BFD\) (góc tương ứng)

Mà \(\angle NCB + \angle DCB = {180^0}\) (kề bù)

Nên \(\angle BFD + \angle DCB = {180^0}\)

Do đó tứ giác DCBF nội tiếp (tứ giác có tổng hai góc đối bằng \({180^0}\))

Vậy điểm F nằm trên đường tròn (O) (đpcm).

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com