Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Điểm cực tiểu của hàm số \(y = {x^3} - 3x - 2\) là:

Câu hỏi số 434623:
Nhận biết

Điểm cực tiểu của hàm số \(y = {x^3} - 3x - 2\) là:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:434623
Phương pháp giải

Điểm \(x = {x_0}\)là điểm cực tiểu của hàm số \(y = f\left( x \right)\) khi và chỉ khi\(\left\{ {\begin{array}{*{20}{l}}{f'\left( {{x_0}} \right) = 0}\\{f''\left( {{x_0}} \right) > 0}\end{array}} \right.\).

Giải chi tiết

TXĐ: \(D = \mathbb{R}\).

Ta có: \(y' = 3{x^2} - 3,{\mkern 1mu} {\mkern 1mu} y'' = 6x\).

Xét hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{y' = 0}\\{y'' > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{3{x^2} - 3 = 0}\\{6x > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x =  \pm 1}\\{x > 0}\end{array}} \right. \Leftrightarrow x = 1\).

Vậy điểm cực tiểu của hàm số đã cho là \(x = 1\).

Chú ý khi giải

Điểm cực tiểu của hàm số là \(x = 1\), điểm cực tiểu của đồ thị hàm số mới là \(M\left( {1; - 4} \right)\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com