Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Giá trị cực tiểu \({y_{c{\rm{r}}}}\) của hàm số \(y = {x^3} - 3{{\rm{x}}^2} + 7\) là:

Câu 434652: Giá trị cực tiểu \({y_{c{\rm{r}}}}\) của hàm số \(y = {x^3} - 3{{\rm{x}}^2} + 7\) là:

A. \({y_{c{\rm{r}}}} = 2\)  

B. \({y_{c{\rm{r}}}} = 3\). 

C. \({y_{c{\rm{r}}}} = 0.\)

D. \({y_{c{\rm{r}}}} = 7\).

Câu hỏi : 434652

Phương pháp giải:

Điểm \(x = {x_0}\) là điểm cực tiểu của hàm số .\(y = f\left( x \right) \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{f'\left( {{x_0}} \right) = 0}\\{f''\left( {{x_0}} \right) > 0}\end{array}} \right..\).


\( \Rightarrow y = y\left( {{x_0}} \right)\) là giá trị cực tiểu của hàm số.

  • Đáp án : B
    (0) bình luận (0) lời giải

    Giải chi tiết:

    Xét hàm số:\(y = {x^3} - 3{x^2} + 7\)  ta có:

    \(y' = 3{x^2} - 6x \Rightarrow y'' = 6x - 6\)

    Gọi \(x = {x_0}\) là điểm cực tiểu của hàm số. Khi đó ta có:

    \(\begin{array}{*{20}{l}}{\left\{ {\begin{array}{*{20}{l}}{y'\left( {{x_0}} \right) = 0}\\{y''\left( {{x_0}} \right) > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{3x_0^2 - 6{x_0} = 0}\\{6{x_0} - 6 > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\left[ {\begin{array}{*{20}{l}}{{x_0} = 0}\\{{x_0} = 2}\end{array}} \right.}\\{{x_0} > 1}\end{array}} \right. \Leftrightarrow {x_0} = 2.}\\{ \Rightarrow {y_{CT}} = y\left( 2 \right) = {2^3} - {{3.2}^2} + 7 = 3.}\end{array}\)

    Chọn B.

    Lời giải sai Bình thường Khá hay Rất Hay
Xem bình luận

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com