Cho hàm số \(y = {x^4} - 2{x^2} + m - 2\) có đồ thị \(\left( C \right)\). Gọi \(S\) là tập các giá
Cho hàm số \(y = {x^4} - 2{x^2} + m - 2\) có đồ thị \(\left( C \right)\). Gọi \(S\) là tập các giá trị của \(m\) sao cho đồ thị \(\left( C \right)\) có đúng một tiếp tuyến song song với trục Ox. Tổng tất cả các phần tử của \(S\) là
Đáp án đúng là: C
Quảng cáo
Nhận xét rằng: Với hàm đã cho thì để tiếp tuyến của đồ thị hàm số đó song song với trục Ox thì tiếp điểm là điểm cực trị của đồ thị hàm số.
Từ đó suy ra điều kiện để có đúng một tiếp tuyến song song với trục Ox.
Chú ý rằng ta tìm cực trị bằng định lý:
+ Nếu \(\left\{ {\begin{array}{*{20}{l}}{y'\left( {{x_0}} \right) = 0}\\{y''\left( {{x_0}} \right) < 0}\end{array}} \right. \Rightarrow {x_0}\) là điểm cực đại của hàm số
+ Nếu \(\left\{ {\begin{array}{*{20}{l}}{y'\left( {{x_0}} \right) = 0}\\{y''\left( {{x_0}} \right) > 0}\end{array}} \right. \Rightarrow {x_0}\) là điểm cực tiểu của hàm số
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












