Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:

Khi đó số nghiệm của phương trình \(2\left| {f\left( {2x - 3} \right)} \right| - 5 = 0\) là:

Câu 434810: Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:



Khi đó số nghiệm của phương trình \(2\left| {f\left( {2x - 3} \right)} \right| - 5 = 0\) là:

A. \(3\)

B. \(2\)

C. \(4\)

D. \(1\)

Câu hỏi : 434810

Phương pháp giải:

- Phá trị tuyệt đối và giải phương trình.


- Số nghiệm của phương trình \(f\left( x \right) = m\) là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = m\) song song với trục hoành.

  • Đáp án : B
    (1) bình luận (0) lời giải

    Giải chi tiết:

    Ta có \(2\left| {f\left( {2x - 3} \right)} \right| - 5 = 0 \Leftrightarrow \left[ \begin{array}{l}f\left( {2x - 3} \right) = \dfrac{5}{2}\\f\left( {2x - 3} \right) =  - \dfrac{5}{2}\end{array} \right.\).

    Dựa vào BBT ta có: \(\left[ \begin{array}{l}2x - 3 = a < 0\\2x - 3 = b > 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{a + 3}}{2}\\x = \dfrac{{b + 3}}{2}\end{array} \right.\).

    Vậy phương trình ban đầu có 2 nghiệm phân biệt.

    Chọn B.

    Lời giải sai Bình thường Khá hay Rất Hay

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com