Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Một ô tô đang chuyển động với vận tốc 54km/h thì hãm phanh chuyển động chậm dần đều đi được 20m thì vận tốc còn 18km/h. Tính gia tốc của ô tô và quãng đường ô tô đi được từ lúc hãm phanh đến lúc dừng hẳn.

Câu 439539:

Một ô tô đang chuyển động với vận tốc 54km/h thì hãm phanh chuyển động chậm dần đều đi được 20m thì vận tốc còn 18km/h. Tính gia tốc của ô tô và quãng đường ô tô đi được từ lúc hãm phanh đến lúc dừng hẳn.

A. \( - 5m/{s^2};\,\,22,5m\)

B. \(5m/{s^2};\,\,22,5m\) 

C. \(3m/{s^2};\,\,30m\) 

D. \( - 3m/{s^2};\,\,30m\)

Câu hỏi : 439539

Phương pháp giải:

Công thức liên hệ giữa s,v và a: \({v^2} - v_0^2 = 2a.s\)

  • Đáp án : A
    (0) bình luận (0) lời giải

    Giải chi tiết:

    Ta có: \(\left\{ \begin{array}{l}{v_0} = 54km/h = 15m/s\\v = 18km/h = 5m/s\\s = 20m\end{array} \right.\)

    Áp dụng công thức liên hệ giữa s, v, a ta có:

    \({v^2} - v_0^2 = 2a.s \Rightarrow a = \dfrac{{{v^2} - v_0^2}}{{2s}} = \dfrac{{{5^2} - {{15}^2}}}{{2.20}} =  - 5m/{s^2}\)

    Khi ô tô dừng hẳn thì: \(v' = 0\)

    Áp dụng công thức liên hệ giữa s’, v’, a ta có:

    \(v{'^2} - {v^2} = 2a.s' \Rightarrow s' = \dfrac{{v{'^2} - {v^2}}}{{2a}} = \dfrac{{{0^2} - {{15}^2}}}{{2.\left( { - 5} \right)}} = 22,5m\)

    Lời giải sai Bình thường Khá hay Rất Hay
Xem bình luận

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com