Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = \left( {\ln x + 1} \right)\left( {{e^x}

Câu hỏi số 460866:
Thông hiểu

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = \left( {\ln x + 1} \right)\left( {{e^x} - 2019} \right)\left( {x + 1} \right)\) trên khoảng \(\left( {0; + \infty } \right)\). Hỏi hàm số \(y = f\left( x \right)\) có bao nhiêu điểm cực trị?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:460866
Phương pháp giải

Giải phương trình \(f'\left( x \right) = 0\) xác định số điểm cực trị bằng số nghiệm bội lẻ của phương trình \(f'\left( x \right) = 0\).

Giải chi tiết

TXĐ: \(D = \left( {0; + \infty } \right)\).

Ta có:

\(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}\ln x + 1 = 0\\{e^x} - 2019 = 0\\x + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\ln x =  - 1\\{e^x} = 2019\\x =  - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{1}{e} \in \left( {0; + \infty } \right)\\x = \ln 2019 \in \left( {0; + \infty } \right)\\x =  - 1 \notin \left( {0; + \infty } \right)\end{array} \right.\)

Vậy hàm số đã cho có 2 điểm cực trị.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com