Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tập xác định của bất phương trình \(\sqrt {\dfrac{{x + 1}}{{{{\left( {x - 2} \right)}^2}}}}  < x + 1\)

Câu hỏi số 461705:
Thông hiểu

Tập xác định của bất phương trình \(\sqrt {\dfrac{{x + 1}}{{{{\left( {x - 2} \right)}^2}}}}  < x + 1\) là

Đáp án đúng là: D

Quảng cáo

Câu hỏi:461705
Phương pháp giải

\(\sqrt {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \) xác định khi và chỉ khi \(\left\{ \begin{array}{l}\dfrac{{f\left( x \right)}}{{g\left( x \right)}} \ge 0\\g\left( x \right) \ne 0\end{array} \right.\)

Giải chi tiết

Bất phương trình \(\sqrt {\dfrac{{x + 1}}{{{{\left( {x - 2} \right)}^2}}}}  < x + 1\) xác định khi và chỉ khi :

 \(\,\left\{ \begin{array}{l}x - 2 \ne 0\\\dfrac{{x + 1}}{{{{\left( {x - 2} \right)}^2}}} \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 2\\x + 1 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 2\\x \ge  - 1\end{array} \right.\)

Vậy \(D = \left[ { - 1;\,\, + \infty } \right)\backslash \left\{ 2 \right\}\).

Đáp án cần chọn là: D

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com