Cho đường tròn \(\left( O \right)\), đường kính \(AB\). Trên \(\left( O \right)\) lấy điểm \(C\) sao
Cho đường tròn \(\left( O \right)\), đường kính \(AB\). Trên \(\left( O \right)\) lấy điểm \(C\) sao cho \(AC < BC\). Trên đoạn thẳng \(OB\) lấy điểm \(I\) cố định (\(I\) khác \(O,B\)). Đường thẳng qua \(I\) vuông góc với \(AB\) cắt \(BC\) tại \(E\), cắt \(AC\) tại \(F\)
a) Chứng minh rằng tứ giác \(ACEI\) là tứ giác nội tiếp.
b) Gọi \(M\) là giao điểm của đường tròn ngoại tiếp tam giác \(AEF\) với \(AB\) (\(M\) khác \(A\)). Chứng minh rằng tam giác \(EBM\) cân.
c) Chứng minh rằng khi C di chuyển trên (O) thì tâm đường tròn ngoại tiếp tam giác AEF chạy trên một đường thẳng cố định.
Quảng cáo
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










