Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho phương trình \({x^2} - 2mx + 2m - 1 = 0.\) Tìm \(m\) để phương trình có hai nghiệm phân biệt

Câu hỏi số 478897:
Vận dụng

Cho phương trình \({x^2} - 2mx + 2m - 1 = 0.\) Tìm \(m\) để phương trình có hai nghiệm phân biệt \({x_1},{x_2}\left( {{x_1} < {x_2}} \right)\) thỏa mãn \(4{x_1} = x_2^2\).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:478897
Phương pháp giải

Để ý biểu thức Delta của phương trình có thể viết dưới dạng chính phương, nên ta có thể tính cụ thể \({x_1},{x_2}\) theo \(m\) rồi thay vào yêu cầu

Giải chi tiết

Ta có \(\Delta ' = {\left( {m - 1} \right)^2}.\)Để phương trình có 2 nghiệm phân biệt thì\(\Delta ' > 0 \Leftrightarrow m \ne 1\)

Vì \({x_1} < {x_2}\)nên phương trình có hai nghiệm \({x_1} = m - \left| {m - 1} \right|;{x_2} = m + \left| {m - 1} \right|\)

Theo đề bài ta có: \(4{x_1} = x_2^2 \Leftrightarrow 4\left( {m - \left| {m - 1} \right|} \right) = {\left( {m + \left| {m - 1} \right|} \right)^2}\)

\(\begin{array}{l} \Leftrightarrow 4m - 4\left| {m - 1} \right| = {m^2} + 2m\left| {m - 1} \right| + {m^2} - 2m + 1\\ \Leftrightarrow 2{m^2} - 6m + 1 + 2m\left| {m - 1} \right| + 4\left| {m - 1} \right| = 0\left( 1 \right)\end{array}\)

\(\begin{array}{l}TH1:\,m > 1 \Rightarrow \left( 1 \right) \Leftrightarrow 2{m^2} - 6m + 1 + 2m\left( {m - 1} \right) + 4\left( {m - 1} \right) = 0\\ \Leftrightarrow 4{m^2} - 4m - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}m = \dfrac{3}{2}(tm)\\m =  - \dfrac{1}{2}(ktm)\end{array} \right.\end{array}\)

 \(\begin{array}{l}TH2:\,m < 1 \Rightarrow \left( 1 \right) \Leftrightarrow 2{m^2} - 6m + 1 - 2m\left( {m - 1} \right) - 4\left( {m - 1} \right) = 0\\ \Leftrightarrow  - 8m + 5 = 0 \Leftrightarrow m = \dfrac{5}{8}(tm)\end{array}\)

Vậy \(m \in \left\{ {\dfrac{3}{2};\dfrac{5}{8}} \right\}\).

Đáp án cần chọn là: C

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com