Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho phương trình \({x^2} - 2\left( {m + 1} \right)x + {m^2} = 0\) (m là tham số).

Cho phương trình \({x^2} - 2\left( {m + 1} \right)x + {m^2} = 0\) (m là tham số).

Trả lời cho các câu 1, 2 dưới đây:

Câu hỏi số 1:
Vận dụng

Giải phương trình với \(m = 1\).

Đáp án đúng là: C

Câu hỏi:506568
Phương pháp giải

a) Thay \(m = 1\) vào phương trình, áp dụng công thức nghiệm của phương trình bậc hai một ẩn để giải phương trình

Giải chi tiết

a) Với \(m = 1\), phương trình đã cho trở thành \({x^2} - 4x + 1 = 0\).

Ta có \(\Delta ' = {2^2} - 1 = 3 > 0\) nên phương trình có 2 nghiệm phân biệt \(\left[ \begin{array}{l}{x_1} = \frac{{ - b' + \sqrt {\Delta '} }}{a} = 2 + \sqrt 3 \\{x_2} = \frac{{ - b' - \sqrt {\Delta '} }}{a} = 2 - \sqrt 3 \end{array} \right.\).

Vậy khi \(m = 1\) tập nghiệm của phương trình là \(S = \left\{ {2 \pm \sqrt 3 } \right\}\).

Đáp án cần chọn là: C

Câu hỏi số 2:
Vận dụng

Tìm giá trị của \(m\) để phương trình đã cho có hai nghiệm \({x_1},\,\,{x_2}\) thỏa mãn: \(x_1^2 + x_2^2 + 6 = 4{x_1}{x_2}\)

Đáp án đúng là: D

Câu hỏi:506569
Phương pháp giải

b) Xác định điều kiện để phương trình có hai nghiệm phân biệt; biến đổi biểu thức để xuất hiện \({x_1} + {x_2};{x_1}{x_2}\); áp dụng hệ thức Vi – ét để tính \({x_1} + {x_2};{x_1}{x_2}\) sau đó thay vào biểu thức để tính \(m\)

Giải chi tiết

b) Ta có: \(\Delta ' = {\left( {m + 1} \right)^2} - {m^2} = 2m + 1\).

Để phương trình đã cho có 2 nghiệm \({x_1},\,\,{x_2}\) thì \(\Delta ' \ge 0 \Leftrightarrow 2m + 1 \ge 0 \Leftrightarrow m \ge  - \frac{1}{2}\).

Khi đó áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\left( {m + 1} \right)\\{x_1}{x_2} = {m^2}\end{array} \right.\).

Theo bài ra ta có:

\(\begin{array}{l}\,\,\,\,\,\,\,x_1^2 + x_2^2 + 6 = 4{x_1}{x_2}\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} + 6 = 4{x_1}{x_2}\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 6{x_1}{x_2} + 6 = 0\\ \Leftrightarrow 4{\left( {m + 1} \right)^2} - 6{m^2} + 6 = 0\\ \Leftrightarrow  - 2{m^2} + 8m + 10 = 0\,\,\left( 1 \right)\end{array}\)

Ta có \(a - b + c =  - 2 - 8 + 10 = 0\) nên phương trình có 2 nghiệm phân biệt \(\left[ \begin{array}{l}{m_1} =  - 1\,\,\,\left( {ktm} \right)\\{m_2} =  - \frac{c}{a} =  - \frac{{10}}{{ - 2}} = 5\,\,\left( {tm} \right)\end{array} \right.\).

Vậy có 1 giá trị của \(m\) thỏa mãn là \(m = 5\).

Đáp án cần chọn là: D

Quảng cáo

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com