Trong mặt phẳng tọa độ \(Oxy\), cho parabol \(\left( P \right):\,\,y = {x^2}\) và đường thẳng \(\left(
Trong mặt phẳng tọa độ \(Oxy\), cho parabol \(\left( P \right):\,\,y = {x^2}\) và đường thẳng \(\left( d \right):\,\,y = mx + 3\) (\(m\)là tham số).
1. Vẽ parabol \(\left( P \right)\).
2. Khi \(m = 2\), tìm tọa độ giao điểm của \(\left( P \right)\) và \(\left( d \right)\) bằng phép tính.
3. Tìm m để đường thẳng \(\left( d \right)\) và parabol \(\left( P \right)\) luôn cắt nhau tại hai điểm phân biệt có hoành độ \({x_1},\,\,{x_2}\) thỏa mãn \(\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} = \frac{3}{2}\).
Quảng cáo
1) Lập bảng giá trị để vẽ đồ thi hàm số
2) Xét phương trình hoành độ giao điểm của \(\left( P \right)\) và \(\left( d \right)\), đưa về phương trình bậc hai một ẩn sau đó giải phương trình để tìm nghiệm và suy ra giao điểm
3) Xét phương trình hoành độ giao điểm của \(\left( P \right)\) và \(\left( d \right)\), đưa về phương trình bậc hai một ẩn, yêu cầu đề bài được đưa về tìm m để phương trình có hai nghiệm phân biệt thỏa mãn \(\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} = \frac{3}{2}\).
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












