Cho tam giác \(ABC\) có ba góc nhọn nội tiếp đường tròn \(\left( O \right)\). Các đường cao
Cho tam giác \(ABC\) có ba góc nhọn nội tiếp đường tròn \(\left( O \right)\). Các đường cao \(AD\,\,\left( {D \in BC} \right)\), \(BE\,\,\left( {E \in AC} \right)\) và \(CF\,\,\left( {F \in AB} \right)\) cắt nhau tại \(H\).
1. Chứng minh tứ giác \(BCEF\) nội tiếp đường tròn;
2. Chứng minh \(DA\) là tia phân giác của \(\angle EDF\);
3. Kẻ đường kính \(AK\), gọi \(I\) là trung điểm của \(BC\). Chứng minh ba điểm \(H,\,\,I,\,\,K\) thẳng hàng.
Quảng cáo
1) Vận dụng dấu hiệu nhận biết tứ giác nội tiếp đường tròn: tứ giác có 2 đỉnh kề cùng nhìn một cạnh dưới các góc bằng nhau
2) Vận dụng tính chất của tứ giác nối tiếp, suy ra các góc bằng nhau; dấu hiệu nhận biết phân giác của một góc
3) Chứng minh \(BHCK\) là hình bình hành, suy ra \(H,\,\,I,\,\,K\) thẳng hàng
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com











