Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác \(ABC\) có ba góc nhọn nội tiếp đường tròn \(\left( O \right)\). Các đường cao

Câu hỏi số 507120:
Vận dụng

Cho tam giác \(ABC\) có ba góc nhọn nội tiếp đường tròn \(\left( O \right)\). Các đường cao \(AD\,\,\left( {D \in BC} \right)\), \(BE\,\,\left( {E \in AC} \right)\) và \(CF\,\,\left( {F \in AB} \right)\) cắt nhau tại \(H\).

1. Chứng minh tứ giác \(BCEF\) nội tiếp đường tròn;

2. Chứng minh \(DA\) là tia phân giác của \(\angle EDF\);

3. Kẻ đường kính \(AK\), gọi \(I\) là trung điểm của \(BC\). Chứng minh ba điểm \(H,\,\,I,\,\,K\) thẳng hàng.

Quảng cáo

Câu hỏi:507120
Phương pháp giải

1) Vận dụng dấu hiệu nhận biết tứ giác nội tiếp đường tròn: tứ giác có 2 đỉnh kề cùng nhìn một cạnh dưới các góc bằng nhau

2) Vận dụng tính chất của tứ giác nối tiếp, suy ra các góc bằng nhau; dấu hiệu nhận biết phân giác của một góc

3) Chứng minh \(BHCK\) là hình bình hành, suy ra \(H,\,\,I,\,\,K\) thẳng hàng

Giải chi tiết

1) Xét tứ giác \(BCEF\) có \(\angle BEC = \angle BFC = {90^0}\,\,\left( {gt} \right)\) nên \(BCEF\) là tứ giác nội tiếp (tứ giác có 2 đỉnh kề cùng nhìn một cạnh dưới các góc bằng nhau).

2) Xét tứ giác \(BDHF\) có: \(\angle BDH + \angle BFH = {90^0} + {90^0} = {180^0}\) \( \Rightarrow BDHF\) là tứ giác nội tiếp (dhnb).

\( \Rightarrow \angle HDF = \angle HBF = \angle EBA\) (2 góc nội tiếp cùng chắn cung \(HF\)).

Xét tứ giác \(CDHE\) có: \(\angle CDH + \angle CEH = {90^0} + {90^0} = {180^0}\) \( \Rightarrow CDHE\) là tứ giác nội tiếp (dhnb).

\( \Rightarrow \angle HDE = \angle HCE = \angle FCA\) (2 góc nội tiếp cùng chắn cung \(HE\)).

Ta lại có: \(\left\{ \begin{array}{l}\angle EBA + \angle BAC = {90^0}\\\angle FCA + \angle BAC = {90^0}\end{array} \right.\) (do \(\Delta ABE,\,\,\Delta ACF\) là các tam giác vuông tại \(A\)) \( \Rightarrow \angle EBA = \angle FCA\).

\( \Rightarrow \angle HDF = \angle HDE\).

Vậy \(DA\) là tia phân giác của \(\angle EDF\).

3) Vì \(AK\) là đường kính của \(\left( O \right)\) nên \(\angle ABK = \angle ACK = {90^0}\) (góc nội tiếp chắn nửa đường tròn).

Ta có:

\(\begin{array}{l}\left\{ \begin{array}{l}BK \bot AB\,\,\left( {cmt} \right)\\CH \bot AB\,\,\left( {gt} \right)\end{array} \right. \Rightarrow BK//CH\\\left\{ \begin{array}{l}CK \bot AC\,\,\left( {cmt} \right)\\BH \bot AC\,\,\left( {gt} \right)\end{array} \right. \Rightarrow CK//BH\end{array}\)

\( \Rightarrow BHCK\) là hình bình hành (tứ giác có các cặp cạnh đối song song).

\( \Rightarrow \) Hai đường chéo \(BC\) và \(HK\) cắt nhau tại trung điểm mỗi đường (tính chất).

Mà \(I\) là trung điểm của \(BC\,\,\left( {gt} \right)\), do đó \(I\) phải là trung điểm của \(HK\).

Vậy \(H,\,\,I,\,\,K\) thẳng hàng (đpcm).

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com