Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trên mặt phẳng tọa độ, cho parabol \((P):\,y = {x^2}\) và đường thẳng \((d):\,y = 2x + {m^2} - 2m\) (m

Trên mặt phẳng tọa độ, cho parabol \((P):\,y = {x^2}\) và đường thẳng \((d):\,y = 2x + {m^2} - 2m\) (m là tham số).

Trả lời cho các câu 1, 2, 3 dưới đây:

Câu hỏi số 1:
Vận dụng

Biết \(A\) là một điểm thuộc \((P)\) và có hoành độ \({x_A} =  - 2\). Xác định tọa độ điểm \(A\).

Đáp án đúng là: C

Câu hỏi:507492
Phương pháp giải

a) Thay \({x_A} =  - 2\) vào hàm số \(\left( P \right)\), tìm được tung độ \({y_A}\).

Giải chi tiết

a) Thay \({x_A} =  - 2\) vào hàm số \(\left( P \right):\,\,\,y = {x^2}\) ta được \({y_A} = {\left( { - 2} \right)^2} = 4\).

Vậy \(A\left( { - 2;4} \right)\).

Đáp án cần chọn là: C

Câu hỏi số 2:
Vận dụng

Tìm tất cả các giá trị của m để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt.

Đáp án đúng là: D

Câu hỏi:507493
Phương pháp giải

b) Xét phương trình hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\), yêu cầu đề bài thì phương trình hoành độ giao điểm có 2 nghiệm phân biệt, sau đó sử dụng biệt thức đen – ta tìm điều kiện.

Giải chi tiết

b) Phương trình hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\) là:

\({x^2} = 2x + {m^2} - 2m \Leftrightarrow {x^2} - 2x - {m^2} + 2m = 0\,\,\,\,\left( 1 \right)\)

\(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt khi và chỉ khi phương trình (1) có hai nghiệm phân biệt

\(\begin{array}{l} \Leftrightarrow \Delta ' > 0 \Leftrightarrow 1 + {m^2} - 2m > 0\\ \Leftrightarrow {\left( {m - 1} \right)^2} > 0 \Leftrightarrow m \ne 1\end{array}\)

Vậy với \(m \ne 1\) thì \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt.

Đáp án cần chọn là: D

Câu hỏi số 3:
Vận dụng

Xác định tất cả các giá trị của m để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ lần lượt là \({x_1}\) và \({x_2}\) thỏa mãn điều kiện \({x_1}^2 + 2{x_2} = 3m\).

Đáp án đúng là: D

Câu hỏi:507494
Phương pháp giải

c) Từ Giải Câu b, áp dụng hệ thức Vi – ét, xác định được \({x_1} + {x_2}\), kết hợp với giả thiết tìm được tham số \(m\).

Giải chi tiết

c) Với \(m \ne 1\). Áp dụng định lí Vi – ét phương trình (1) có: \(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = 2\,}\\{{x_1}.{x_2} =  - {m^2} + 2m\,}\end{array}} \right.\,\)

Do \({x_1}\) là nghiệm của phương trình (1) nên:

\({x_1}^2 = 2{x_1} + {m^2} - 2m\) mà \({x_1}^2 + 2{x_2} = 3m\) nên:

\(\begin{array}{l}2{x_1} + {m^2} - 2m + 2{x_2} = 3m\\ \Leftrightarrow 2({x_1} + {x_2}) + {m^2} - 5m = 0\\ \Rightarrow {m^2} - 5m + 4 = 0\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 1\,\,\,\,\left( {ktm} \right)}\\{m = 4\,\,\,\left( {tm} \right)}\end{array}} \right.\end{array}\)

Vậy \(m = 4\).

Đáp án cần chọn là: D

Quảng cáo

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com