Cho tam giác \(ABC\) có ba góc nhọn, nội tiếp trong đường tròn \(\left( {O;R} \right)\) và hai đường
Cho tam giác \(ABC\) có ba góc nhọn, nội tiếp trong đường tròn \(\left( {O;R} \right)\) và hai đường cao \(BE,CF\) cắt nhau tại \(H\).
a) Chứng minh rằng \(BCEF\) nội tiếp đường tròn.
b) Chứng minh \(OA \bot EF\).
c) Hai đường thẳng \(BE,CF\) lần lượt cắt đường tròn \(\left( O \right)\) tại hai điểm lần lượt là \(N,P\). Đường thẳng \(AH\) cắt đường tròn \(\left( O \right)\) tại điểm thứ hai là \(M\)và cắt \(BC\) tại \(D\). Tính giá trị biểu thức \(\frac{{AM}}{{AD}} + \frac{{BN}}{{BE}} + \frac{{CP}}{{CF}}\).
Quảng cáo
a) Vận dụng dấu hiệu nhận biết tứ giác nội tiếp: Tứ giác có hai đỉnh kề cùng nhìn một cạnh dưới các góc bằng nhau
b) Kẻ tiếp tuyến \(Ax\) của \(\left( O \right)\)\( \Rightarrow OA \bot Ax\), chứng minh \(Ax//EF\) suy ra điều phải chứng minh.
c) Sử dụng công thức tính diện tích tam giác, các tam giác bằng nhau
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com











