Cho nửa đường tròn \(\left( O \right)\) đường kính \(AB = 2R\). Lấy điểm \(C\) thuộc nửa đường
Cho nửa đường tròn \(\left( O \right)\) đường kính \(AB = 2R\). Lấy điểm \(C\) thuộc nửa đường tròn \(\left( O \right)\) sao cho \(CA < CB\). Gọi \(H\) là trung điểm của đoạn thẳng \(OB\), đường thẳng vuông góc với \(AB\) tại \(H\) cắt dây \(CB\) và tia \(AC\) lần lượt tại \(D\) và \(E\).
a) Chứng minh rằng bốn điểm \(A,\,\,C,\,\,D,\,\,H\) cùng thuộc một đường tròn.
b) Gọi \(I\) là trung điểm \(DE\). Chứng minh rằng \(IC\) là tiếp tuyến của nửa đường tròn \(\left( O \right)\).
c) Chứng minh rằng \(AC.AE = 3{R^2}\).
Quảng cáo
a) Vận dụng dấu hiệu nhận biết của tứ giác nội tiếp, chứng minh tứ giác \(ACHD\) nội tiếp (vì có tổng hai góc đối bằng \({180^0}\))
Suy ra \(A,\,\,C,\,\,D,\,\,H\) cùng thuộc một đường tròn.
b) Chứng minh \(\angle ICD = \angle HDB\) và \(\angle DCO = \angle OBD\) mà \(\angle ICO = \angle ICD + \angle DCO = \angle HDB + OBD = {90^0}\)
nên ta có điều phải chứng minh.
c) Chứng minh \(\Delta AHE \sim \Delta ACB\,\,\,\left( {g.g} \right)\) suy ra \(AC.AE = AB.AH = 2R.AH\)
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com











