Cho phương trình \({x^2} - \left( {m + 2} \right)x + m + 1 = 0\,\,\,\left( 1 \right)\) (\(m\) là tham số).a)
Cho phương trình \({x^2} - \left( {m + 2} \right)x + m + 1 = 0\,\,\,\left( 1 \right)\) (\(m\) là tham số).
a) Giải phương trình khi \(m = - 3\).
b) Chứng minh phương trình \(\left( 1 \right)\) luôn có nghiệm với mọi số thực \(m.\)
c) Tìm \(m\) để phương trình (1) có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) là độ dài hai cạnh góc vuông của một tam giác vuông có độ dài đường cao kẻ từ đỉnh góc vuông xuống cạnh huyền là \(h = \dfrac{2}{{\sqrt 5 }}\).
Quảng cáo
a) Thay \(m = - 3\) vào phương trình, ta có được phương trình bậc hai một ẩn
Áp dụng công thức nhẩm nghiệm nhanh: phương trình \(a{x^2} + bx + c = 0\,\left( {a \ne 0} \right)\) nếu có \(a + b + c = 0\) thì phương trình có hai nghiệm phân biệt \({x_1} = 1;{x_2} = \dfrac{c}{a}\)
b) Phương trình luôn có nghiệm với mọi số thực \(m\) khi \(\Delta \ge 0,\forall m\)
c) + Phương trình có hai nghiệm phân biệt \( \Leftrightarrow \Delta > 0\)
+ Áp dụng định lí Vi – ét, tính được \({x_1} + {x_2};{x_1}.{x_2}\) theo tham số \(m\)
+ Do hai nghiệm phân biệt \({x_1},{x_2}\) là độ dài hai cạnh góc vuông nên ta có: \({x_1},{x_2} > 0\) suya ra điều kiện của \(m\)
+ Áp dụng hệ thức lượng trong tam giác vuông, ta có hệ thức \(\dfrac{1}{{x_1^2}} + \dfrac{1}{{x_2^2}} = \dfrac{1}{{{{\left( {\dfrac{2}{{\sqrt 5 }}} \right)}^2}}}\). Biến đổi hệ thức, xuất hiện \({x_1} + {x_2};{x_1}.{x_2}\) sau đó thay tham số \(m\) thực hiện tính toán.
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










