Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Có bao nhiêu giá trị nguyên của tham số \(m\) để tồn tại cặp số thực dương \(\left( {x;y}

Câu hỏi số 535984:
Vận dụng

Có bao nhiêu giá trị nguyên của tham số \(m\) để tồn tại cặp số thực dương \(\left( {x;y} \right)\) thỏa mãn đẳng thức \(\dfrac{{xy - 1}}{{{x^2} + y}} = {2^{{x^2} - 2xy + y + 1}}\) và phương trình \(\dfrac{1}{4}\log _3^2\left( {2\left( {xy - 1} \right) - y} \right) - 2m{\log _3}x + 2{m^2} - m = 0\) có nghiệm?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:535984
Phương pháp giải

- Đối với phương trình \(\dfrac{{xy - 1}}{{{x^2} + y}} = {2^{{x^2} - 2xy + y + 1}}\), sử dụng phương pháp hàm đặc trưng.

- Đưa phương trình \(\dfrac{1}{4}\log _3^2\left( {2\left( {xy - 1} \right) - y} \right) - 2m{\log _3}x + 2{m^2} - m = 0\) về chỉ còn ẩn \(x\), đặt ẩn phụ \(t = {\log _3}x\), tìm điều kiện để phương trình bậc hai có nghiệm.

Giải chi tiết

Vì \(\dfrac{{xy - 1}}{{{x^2} + y}} = {2^{{x^2} - 2xy + y + 1}} > 0\), \(x,\,\,y > 0 \Rightarrow xy - 1 > 0\).

Ta có:

\(\begin{array}{l}\,\,\,\,\,\dfrac{{xy - 1}}{{{x^2} + y}} = {2^{{x^2} - 2xy + y + 1}}\\ \Leftrightarrow {\log _2}\dfrac{{xy - 1}}{{{x^2} + y}} = {x^2} - 2xy + y + 1\\ \Leftrightarrow {\log _2}\left( {xy - 1} \right) - {\log _2}\left( {{x^2} + y} \right) = {x^2} - 2xy + y + 1\\ \Leftrightarrow {\log _2}\left( {xy - 1} \right) + 1 + 2xy - 2 = {\log _2}\left( {{x^2} + y} \right) + {x^2} + y\\ \Leftrightarrow {\log _2}\left( {xy - 1} \right) + {\log _2}2 + 2xy - 2 = {\log _2}\left( {{x^2} + y} \right) + {x^2} + y\\ \Leftrightarrow {\log _2}\left( {2xy - 2} \right) + \left( {2xy - 2} \right) = {\log _2}\left( {{x^2} + y} \right) + {x^2} + y\end{array}\)

Xét hàm đặc trưng \(f\left( t \right) = {\log _2}t + t\) ta có \(f'\left( t \right) = \dfrac{1}{{t\ln 2}} + 1 > 0\,\,\forall t > 0\), do đó hàm số đồng biến trên \(\left( {0; + \infty } \right)\).

Khi đó \(f\left( {2xy - 2} \right) = f\left( {{x^2} + y} \right) \Leftrightarrow 2xy - 2 = {x^2} + y\)\( \Leftrightarrow 2\left( {xy - 1} \right) - y = {x^2}\).

Xét phương trình \(\dfrac{1}{4}\log _3^2\left( {2\left( {xy - 1} \right) - y} \right) - 2m{\log _3}x + 2{m^2} - m = 0\)  (1)

\(\begin{array}{l} \Leftrightarrow \dfrac{1}{4}\log _3^2\left( {{x^2}} \right) - 2m{\log _3}x + 2{m^2} - m = 0\\ \Leftrightarrow \log _3^2x - 2m{\log _3}x + 2{m^2} - m = 0\end{array}\)

Đặt \(t = {\log _3}x\), phương trình trở thành \({t^2} - 2mt + 2{m^2} - m = 0\)  (2)

Để phương trình (1) có nghiệm thì phương trình (2) có nghiệm \( \Rightarrow \Delta ' = {m^2} - 2{m^2} + m =  - {m^2} + m \ge 0\) \( \Leftrightarrow 0 \le m \le 1\)

Mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ {0;1} \right\}\).

Vậy có 2 giá trị của \(m\) thỏa mãn yêu cầu bài toán.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com