Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hình vuông \(ABCD\) có cạnh bằng 8. Trên cạnh \(BC\), lấy điểm \(M\) sao cho \(BM = 5\). Gọi \(N\)

Câu hỏi số 553515:
Vận dụng

Cho hình vuông \(ABCD\) có cạnh bằng 8. Trên cạnh \(BC\), lấy điểm \(M\) sao cho \(BM = 5\). Gọi \(N\) là giao điểm của đường thẳng \(CD\) và đường thẳng vuông góc với \(AM\) tại \(A\). Gọi \(I\) là trung điểm của \(MN\). Hãy tính độ dài đoạn thẳng \(DI\).

Đáp án đúng là: B

Câu hỏi:553515
Phương pháp giải

+ \(DN = BM\)

+ Qua \(M\) kẻ đường thẳng song song \(ID\) cắt \(NC\) tại \(E\), chứng minh \(MC = CE\)

+ \(\Delta MCE\) vuông tại \(C\), theo định lý Py – ta – go, tính được \(EM \Rightarrow DI\)

Giải chi tiết

Xét hai tam giác vuông \(ABM\) và \(ADN\), ta có:

\(AB = AD\),\(\angle BAM = \angle DAN\) (hai góc nhọn có cạnh tương ứng vuông góc)

Do đó tam giác \(\Delta ABM = \Delta ADN\) (cạnh góc vuông – góc nhọn). Suy ra, \(DN = BM\) (1).

Qua \(M\) kẻ đường thẳng song song \(ID\) cắt \(NC\) tại \(E\).

Xét tam giác \(MNE\):

Do \(I\) là trung điểm của \(MN\) và \(ID//ME\), nên \(D\) là trung điểm của \(NE\). Vì thế \(DE = DN = BM\) (theo (1)). Suy ra, \(MC = CE\) (2)

Do \(I,D\) tương ứng là trung điểm của \(MN,\,NE\), nên \(ID\) là đường trung bình của tam giác. Do đó, \(DI = \dfrac{1}{2}EM\).

Xét tam giác vuông (tại C) MCE, theo định lí Py – ta – go, ta có:

\(EM = \sqrt {M{C^2} + C{E^2}}  = \sqrt {2M{C^2}} \)(do (2))

      \( = \sqrt 2 MC = \sqrt 2 \left( {BC - BM} \right) = \sqrt 2 \left( {8 - 5} \right) = 3\sqrt 2 \).

Vì thế \(DI = \dfrac{{3\sqrt 2 }}{2}\).

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com