Cho hình vuông \(ABCD\) có cạnh bằng 8. Trên cạnh \(BC\), lấy điểm \(M\) sao cho \(BM = 5\). Gọi \(N\)
Cho hình vuông \(ABCD\) có cạnh bằng 8. Trên cạnh \(BC\), lấy điểm \(M\) sao cho \(BM = 5\). Gọi \(N\) là giao điểm của đường thẳng \(CD\) và đường thẳng vuông góc với \(AM\) tại \(A\). Gọi \(I\) là trung điểm của \(MN\). Hãy tính độ dài đoạn thẳng \(DI\).
Đáp án đúng là: B
+ \(DN = BM\)
+ Qua \(M\) kẻ đường thẳng song song \(ID\) cắt \(NC\) tại \(E\), chứng minh \(MC = CE\)
+ \(\Delta MCE\) vuông tại \(C\), theo định lý Py – ta – go, tính được \(EM \Rightarrow DI\)
Xét hai tam giác vuông \(ABM\) và \(ADN\), ta có:
\(AB = AD\),\(\angle BAM = \angle DAN\) (hai góc nhọn có cạnh tương ứng vuông góc)
Do đó tam giác \(\Delta ABM = \Delta ADN\) (cạnh góc vuông – góc nhọn). Suy ra, \(DN = BM\) (1).
Qua \(M\) kẻ đường thẳng song song \(ID\) cắt \(NC\) tại \(E\).
Xét tam giác \(MNE\):
Do \(I\) là trung điểm của \(MN\) và \(ID//ME\), nên \(D\) là trung điểm của \(NE\). Vì thế \(DE = DN = BM\) (theo (1)). Suy ra, \(MC = CE\) (2)
Do \(I,D\) tương ứng là trung điểm của \(MN,\,NE\), nên \(ID\) là đường trung bình của tam giác. Do đó, \(DI = \dfrac{1}{2}EM\).
Xét tam giác vuông (tại C) MCE, theo định lí Py – ta – go, ta có:
\(EM = \sqrt {M{C^2} + C{E^2}} = \sqrt {2M{C^2}} \)(do (2))
\( = \sqrt 2 MC = \sqrt 2 \left( {BC - BM} \right) = \sqrt 2 \left( {8 - 5} \right) = 3\sqrt 2 \).
Vì thế \(DI = \dfrac{{3\sqrt 2 }}{2}\).
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com