Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho phương trình \(2{x^2} + 4x + m = 0\) (\(m\) là tham số). Tìm tất cả các giá trị của \(m\) để

Câu hỏi số 555544:
Vận dụng

Cho phương trình \(2{x^2} + 4x + m = 0\) (\(m\) là tham số). Tìm tất cả các giá trị của \(m\) để phương trình đã cho có hai nghiệm \({x_1},\,\,{x_2}\) thỏa mãn \(x_1^2 + x_2^2 = 10\).

Đáp án đúng là: D

Câu hỏi:555544
Phương pháp giải

Phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có nghiệm \( \Leftrightarrow \Delta ' \ge 0\)

Áp dụng hệ thức Vi – ét, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{ - b}}{a}\\{x_1}{x_2} = \dfrac{c}{a}\end{array} \right.\)

Biến đổi vế phải của phương trình: \(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2}\), sau đó giải phương trình tìm \(m\)

Giải chi tiết

Ta có \(\Delta ' = {2^2} - 2m = 4 - 2m\).

Để phương trình đã cho có 2 nghiệm \({x_1},\,\,{x_2}\) thì \(\Delta ' \ge 0 \Leftrightarrow 4 - 2m \ge 0 \Leftrightarrow m \le 2\).

Khi đó áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} =  - 2\\{x_1}{x_2} = \dfrac{m}{2}\end{array} \right.\).

Ta có:

\(\begin{array}{l}\,\,\,\,\,\,x_1^2 + x_2^2 = 10\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 10\\ \Leftrightarrow {\left( { - 2} \right)^2} - 2.\dfrac{m}{2} = 10\\ \Leftrightarrow 4 - m = 10\\ \Leftrightarrow m = 4 - 10\\ \Leftrightarrow m =  - 6\,\,\left( {tm} \right)\end{array}\)

Vậy \(m =  - 6\).

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com