Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

1) Giải hệ phương trình \(\left\{ \begin{array}{l}2x + \dfrac{3}{{y - 1}} = 5\\4x - \dfrac{1}{{y - 1}} =

Câu hỏi số 571469:
Vận dụng

1) Giải hệ phương trình \(\left\{ \begin{array}{l}2x + \dfrac{3}{{y - 1}} = 5\\4x - \dfrac{1}{{y - 1}} = 3\end{array} \right.\)

2) Trong mặt phẳng tọa độ \(Oxy\), xét đường thẳng \(\left( d \right):y = mx + 4\) với \(m \ne 0.\)

a) Gọi \(A\) là giao điểm của đường thẳng \(\left( d \right)\) và trục \(Oy.\) Tìm tọa độ của điểm \(A.\)

b) Tìm tất cả giá trị của \(m\) để đường thẳng \(\left( d \right)\) cắt trục \(Ox\) tại điểm \(B\) sao cho tam giác \(OAB\) là tam giác cân.

Quảng cáo

Câu hỏi:571469
Giải chi tiết

1) 

Điều kiện: \(y \ne 1.\)

Đặt \(\dfrac{1}{{y - 1}} = u\,\,\,\left( {u \ne 0} \right)\) ta có hệ phương trình:

\(\begin{array}{l}\,\,\,\,\,\,\left\{ \begin{array}{l}2x + 3u = 5\\4x - u = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4x + 6u = 10\\4x - u = 3\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}7u = 7\\4x - u = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}u = 1\\4x - 1 = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}u = 1\,\,\,\,\left( {tm} \right)\\x = 1\end{array} \right.\end{array}\)

Với \(u = 1\) ta có: \(\dfrac{1}{{y - 1}} = 1 \Rightarrow y - 1 = 1 \Leftrightarrow y = 2\,\,\,\left( {tm} \right)\).

Vậy hệ phương trình đã cho có nghiệm duy nhất \(\left( {x;y} \right) = \left( {1;2} \right)\).

2) 

a) Vì \(A\) là giao điểm của  của đường thẳng \(\left( d \right)\) và trục \(Oy\) nên hoành độ điểm \(A\) là \({x_A} = 0\).

Gọi \(A\left( {0;{y_A}} \right)\)

Vì \(A\left( {0;{y_A}} \right) \in d\) nên ta có: \({y_A} = m.0 + 4 \Leftrightarrow {y_A} = 4\).

Vậy \(A\left( {0;4} \right)\) là giao điểm của đường thẳng \(\left( d \right)\) và trục \(Oy\).

b) Vì \(B\) là giao điểm của \(\left( d \right)\) cắt trục \(Ox\) nên tung độ điểm \(B\) là \({y_B} = 0\).

Gọi \(B\left( {{x_B};0} \right)\). Vì \(B\left( {{x_B};0} \right) \in \left( d \right)\) nên ta có: \(0 = m.{x_B} + 4\) \( \Leftrightarrow {x_B} = \dfrac{{ - 4}}{m}\)  (vì \(m \ne 0\))

Suy ra \(B\left( {\dfrac{{ - 4}}{m};0} \right)\) . Do đó \(OB = \left| {\dfrac{{ - 4}}{m}} \right|\).

Theo câu a) ta có: \(A\left( {0;4} \right)\) nên \(OA = \left| 4 \right| = 4\).

Vì tam giác \(OAB\) cân tại \(O\) nên \(OA = OB \Leftrightarrow \left| {\dfrac{{ - 4}}{m}} \right| = 4\).

\( \Leftrightarrow \left[ \begin{array}{l}\dfrac{{ - 4}}{m} = 4\\\dfrac{4}{m} = 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}4m =  - 4\\4m = 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m =  - 1\,\,\left( {tm} \right)\\m = 1\,\,\,\,\,\left( {tm} \right)\end{array} \right.\)

Vậy \(m =  - 1;\,\,m = 1\) là các giá trị thỏa mãn yêu cầu đề bài.

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com