Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho phương trình \({z^2} - 2z + 10 = 0\). Gọi \({z_1}\) là nghiệm có phần ảo âm của phương trình

Câu hỏi số 603970:
Thông hiểu

Cho phương trình \({z^2} - 2z + 10 = 0\). Gọi \({z_1}\) là nghiệm có phần ảo âm của phương trình đã cho. Tính \(w = \left( {1 - 3i} \right){z_1}\)?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:603970
Phương pháp giải

Giải phương trình bậc hai tìm số phức \({z_1}\) là nghiệm có phần ảo âm.

Sử dụng MTCT tính số phức w.

Giải chi tiết

+) Giải \({z^2} - 2z + 10 = 0\)

\(\begin{array}{l}\Delta  = 4 - 4.10 =  - 36 = 36{i^2}\\ \Rightarrow \sqrt \Delta   = 6i\end{array}\)

+) \(\left[ \begin{array}{l}{z_1} = \dfrac{{ - b - \sqrt \Delta  }}{{2a}} = \dfrac{{2 - 6i}}{2} = 1 - 3i\\{z_2} = \dfrac{{ - b + \sqrt \Delta  }}{{2a}} = \dfrac{{2 + 6i}}{2} = 1 + 3i\end{array} \right.\)

\( \Rightarrow w = \left( {1 - 3i} \right){z_1} = \left( {1 - 3i} \right)\left( {1 - 3i} \right) =  - 8 - 6i\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com