Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho khối nón tròn xoay có đỉnh \(S\), đáy là đường tròn tâm \(O\), góc ở đỉnh bằng

Câu hỏi số 634552:
Vận dụng

Cho khối nón tròn xoay có đỉnh \(S\), đáy là đường tròn tâm \(O\), góc ở đỉnh bằng \({120^0}\). Mặt phẳng \(\left( Q \right)\) thay đổi, đi qua \(S\) và cắt khối nón theo thiết diện là tam giác \(SAB\). Biết rằng giá trị lớn nhất của diện tích tam giác \(SAB\) là \(2{a^2}\). Khoảng cách từ \(O\) đến mặt phẳng \(\left( Q \right)\) trong trường hợp diện tích tam giác \(SAB\) đạt giá trị lớn nhất là

Đáp án đúng là: A

Quảng cáo

Câu hỏi:634552
Phương pháp giải

\({S_{SAB}} = \dfrac{1}{2}SA.SB.\sin S \le \dfrac{1}{2}S{A^2},\,\,{S_{SAB\max }} = \dfrac{1}{2}S{A^2}\) khi và chỉ khi \(\widehat S = {90^0}\).

Giải chi tiết

Gọi I là trung điểm của AB, dựng OK vuông góc SI \( \Rightarrow d\left( {O;\left( {SAB} \right)} \right) = OK\).

Ta có: \({S_{SAB}} = \dfrac{1}{2}SA.SB.\sin \angle ASB \le \dfrac{1}{2}S{A^2}\).

\( \Rightarrow {S_{SAB}}\max  = \dfrac{1}{2}S{A^2}\) khi và chỉ khi \(\angle ASB = {90^0} \Leftrightarrow \Delta SAB\) vuông cân tại S.

\( \Rightarrow \dfrac{1}{2}S{A^2} = 2{a^2} \Rightarrow SA = 2a \Rightarrow AB = 2a\sqrt 2  \Rightarrow AI = a\sqrt 2 \).

Tam giác SAO vuông tại O \( \Rightarrow \left\{ \begin{array}{l}SO = SA.\cos \angle ASO = 2a.\cos {60^0} = a\\OA = SA.\sin \angle ASO = SA.\sin {60^0} = a\sqrt 3 \end{array} \right.\).

Tam giác OAI vuông tại I  \( \Rightarrow OI = \sqrt {3{a^2} - 2{a^2}}  = a\).

Tam giác SOI vuông tại O có: \(SO = OI = a \Rightarrow OK = \dfrac{a}{{\sqrt 2 }}\).

Vậy khoảng cách từ \(O\) đến mặt phẳng \(\left( Q \right)\) trong trường hợp diện tích tam giác \(SAB\) đạt giá trị lớn nhất là \(\dfrac{{a\sqrt 2 }}{2}\)

Tham Gia Group Dành Cho 2K7 luyện thi Tn THPT - ĐGNL - ĐGTD

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com