Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y =  - {x^2}\) có đồ thị là parabol \((P)\) và hàm số \(y = x - m\) có đồ thị là

Câu hỏi số 656992:
Vận dụng

Cho hàm số \(y =  - {x^2}\) có đồ thị là parabol \((P)\) và hàm số \(y = x - m\) có đồ thị là đường thẳng \((d)\) (với \(m\) là tham số).

a) Vẽ đồ thị \((P)\) trên mặt phẳng tọa độ Oxy.

b) Tìm giá trị của m để đường thẳng \((d)\) cắt parabol \((P)\) tại hai điểm phân biệt có hoành độ \({x_1},{x_2}\) sao cho biểu thức \(T = {x_1}\left( {1 - {x_2}} \right) + {x_2}\left( {1 - {x_1}} \right) - 2x_1^2x_2^2\) đạt giá trị lớn nhất.

Quảng cáo

Câu hỏi:656992
Phương pháp giải

1. Bước 1: Tìm tập xác định của hàm số.

Bước 2: Lập bảng giá trị (thường từ 5 đến 7 giá trị) tương ứng giữa \(x\) và \(y\).

Bước 3: Vẽ đồ thị và kết luận.

* Chú ý: vì đồ thị hàm số \(y = a{x^2}(a \ne 0)\) luôn đi qua gốc tọa độ 0 và nhận trục Oy làm trục đối xứng nên khi vẽ đồ thị của hàm số này , ta chỉ cần tìm một số điểm bên phải trục Oy rồi lấy các điểm đối xứng với chúng qua Oy.

2. Phương trình \(a{x^2} + bx + c = 0\) có hai nghiệm \({x_1},{x_2}\) khi đó \(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} =  - \dfrac{b}{a}}\\{{x_1}{x_2} = \dfrac{c}{a}}\end{array}} \right.\).

Giải chi tiết

a) Vẽ đồ thị \((P)\) trên mặt phẳng tọa độ Oxy.

TXĐ: \(D = \mathbb{R}\).

Ta có bảng giá trị sau:

\( \Rightarrow \) Đồ thị hàm số là đường cong parabol đi qua các điểm \(O\,\left( {0;0} \right);A\left( { - 2; - 4} \right);\,\,B\left( { - 1; - 1} \right);C\left( {1; - 1} \right);\,\,D\left( {2; - 4} \right)\)

Hệ số \(a =  - 1 < 0\)nên parabol có bề cong hướng xuống. Đồ thị hàm số nhận Oy làm trục đối xứng.

Ta vẽ được đồ thị hàm số \(y =  - {x^2}\) như sau:

b) Tìm giá trị của m để đường thẳng \((d)\) cắt parabol \((P)\) tại hai điểm phân biệt có hoành độ \({x_1},{x_2}\) sao cho biểu thức \(T = {x_1}\left( {1 - {x_2}} \right) + {x_2}\left( {1 - {x_1}} \right) - 2x_1^2x_2^2\) đạt giá trị lớn nhất.

Xét phương trình hoành độ giao điểm của (P) và (d) ta được:

\(\begin{array}{l} - {x^2} = x - m\\ \Leftrightarrow {x^2} + x - m = 0\,\,\,\,\left( 1 \right)\end{array}\)

Đường thẳng \((d)\) cắt parabol \((P)\) tại hai điểm phân biệt khi và chỉ khi phương trình (1) có 2 nghiệm phân biệt hay \(\Delta  = 1 + 4m > 0 \Leftrightarrow 4m >  - 1 \Leftrightarrow m >  - \dfrac{1}{4}\).

Theo hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} =  - 1\\{x_1}.{x_2} =  - m\end{array} \right.\)

Theo giả thiết: \(T = {x_1}\left( {1 - {x_2}} \right) + {x_2}\left( {1 - {x_1}} \right) - 2x_1^2x_2^2\)

\(\begin{array}{l} = {x_1} - {x_1}{x_2} + {x_2} - {x_1}{x_2} - 2x_1^2x_2^2\\ = {x_1} + {x_2} - 2{x_1}{x_2} - 2x_1^2x_2^2\end{array}\)

\(\begin{array}{l} \Rightarrow T =  - 1 + 2m - 2{m^2}\\\,\,\,\,\,\,\,\,\,\,\, =  - 1 - 2\left( {{m^2} - m} \right)\\\,\,\,\,\,\,\,\,\,\,\, =  - 1 - 2\left( {{m^2} - 2.\dfrac{1}{2}.m + \dfrac{1}{4}} \right) + \dfrac{1}{2}\\\,\,\,\,\,\,\,\,\,\,\, =  - \dfrac{1}{2} - 2{\left( {m - \dfrac{1}{2}} \right)^2} \le  - \dfrac{1}{2}\,\,\forall m\end{array}\)

Dấu “=” xảy ra khi và chỉ khi \(m - \dfrac{1}{2} = 0 \Leftrightarrow m = \dfrac{1}{2}\,\,\left( {TM} \right)\).

Vậy \(m = \dfrac{1}{2}\) thì T đạt giá trị lớn nhất bằng \( - \dfrac{1}{2}\).

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com