Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

a) Một phòng giáo dục và đào tạo phát động phong trào “Học sinh quyên góp sách giáo khoa lớp

Câu hỏi số 677804:
Thông hiểu

a) Một phòng giáo dục và đào tạo phát động phong trào “Học sinh quyên góp sách giáo khoa lớp 9” nhằm giúp học sinh lớp 9 có hoàn cảnh khó khăn. Hưởng ứng phòng trào trên, tổng số học sinh tham gia của Trường Trung học cơ sở A và Trường trung học cơ sở B là 322. Mỗi học sinh của Trường Trung học cơ sở A quyên góp 6 quyển sách, mỗi học sinh của Trường Trung học cơ sở B quyên góp 5 quyển sách. Tổng số sách quyên góp của Trường Trung học cơ sở A nhiều hơn tổng số sách quyên góp của Trường Trung học cơ sở B là 172 quyển. Hỏi mỗi trường đã quyên góp được bao nhiêu quyển sách giáo khoa?

b) Tìm tất cả giá trị của tham số \(m\) sao cho phương trình \({x^2} - \left( {2m + 1} \right)x + {m^2} + 1 = 0\) có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) thỏa mãn \({\left( {{x_1} + 1} \right)^2} + {\left( {{x_2} + 1} \right)^2} = 13\)

Quảng cáo

Câu hỏi:677804
Giải chi tiết

a) Gọi số học sinh của trường A là \(x\) (học sinh) (ĐK: \(x \in \mathbb{N}*,\,\,x < 322\))

Suy ra số học sinh của trường B là \(322 - x\) học sinh

Mỗi học sinh trường A quyên góp 6 quyển sách nên Trường A quyên góp được \(6x\) (quyển sách)

Mỗi học sinh trường B quyên góp 5 quyển sách nên Trường B quyên góp được \(5\left( {322 - x} \right)\) (quyển sách)

Vì tổng số sách quyên góp của Trường Trung học cơ sở A nhiều hơn tổng số sách quyên góp của Trường Trung học cơ sở B là 172 quyển nên

\(\begin{array}{l}6x - 5\left( {322 - x} \right) = 172\\ \Leftrightarrow 6x - 1610 + 5x = 172\\ \Leftrightarrow 11x = 1782\\ \Leftrightarrow x = 162\,\,\left( {TM} \right)\end{array}\)

Vậy trường A quyên góp được \(6.162 = 972\) (quyển sách)

Trường B quyên góp được \(972 - 172 = 800\) (quyển sách)

b) \({x^2} - \left( {2m + 1} \right)x + {m^2} + 1 = 0\)

\(\Delta  = \left[ { - {{\left( {2m + 1} \right)}^2}} \right] - 4.1.\left( {{m^2} + 1} \right) = 4{m^2} + 4m + 1 - 4{m^2} - 4 = 4m - 3\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta  > 0 \Leftrightarrow 4m - 3 > 0 \Leftrightarrow m > \dfrac{3}{4}\)

Áp dụng định lí Viete ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m + 1\\{x_1}{x_2} = {m^2} + 1\end{array} \right.\)

Ta có: \({\left( {{x_1} + 1} \right)^2} + {\left( {{x_2} + 1} \right)^2} = 13\)

\(\begin{array}{l} \Leftrightarrow x_1^2 + 2{x_1} + 1 + x_2^2 + 2{x_2} + 1 = 13\\ \Leftrightarrow x_1^2 + x_2^2 + 2\left( {{x_1} + {x_2}} \right) - 11 = 0\\ \Leftrightarrow x_1^2 + x_2^2 + 2{x_1}{x_2} - 2{x_1}{x_2} + 2\left( {{x_1} + {x_2}} \right) - 11 = 0\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} + 2\left( {{x_1} + {x_2}} \right) - 11 = 0\\ \Rightarrow {\left( {2m + 1} \right)^2} - 2\left( {{m^2} + 1} \right) + 2\left( {2m + 1} \right) - 11 = 0\\ \Leftrightarrow 4{m^2} + 4m + 1 - 2{m^2} - 2 + 4m + 2 - 11 = 0\\ \Leftrightarrow 2{m^2} + 8{m^2} - 10 = 0\\ \Leftrightarrow {m^2} + 4m - 5 = 0\\ \Leftrightarrow \left[ \begin{array}{l}{m_1} = 1\,\,\left( {TM} \right)\\{m_2} =  - 5\,\,\left( {KTM} \right)\end{array} \right.\end{array}\)

Vậy \(m = 1\)

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com